Step |
Hyp |
Ref |
Expression |
1 |
|
dimkerim.0 |
⊢ 0 = ( 0g ‘ 𝑈 ) |
2 |
|
dimkerim.k |
⊢ 𝐾 = ( 𝑉 ↾s ( ◡ 𝐹 “ { 0 } ) ) |
3 |
|
dimkerim.i |
⊢ 𝐼 = ( 𝑈 ↾s ran 𝐹 ) |
4 |
1 2
|
kerlmhm |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝐾 ∈ LVec ) |
5 |
|
eqid |
⊢ ( LBasis ‘ 𝐾 ) = ( LBasis ‘ 𝐾 ) |
6 |
5
|
lbsex |
⊢ ( 𝐾 ∈ LVec → ( LBasis ‘ 𝐾 ) ≠ ∅ ) |
7 |
4 6
|
syl |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → ( LBasis ‘ 𝐾 ) ≠ ∅ ) |
8 |
|
n0 |
⊢ ( ( LBasis ‘ 𝐾 ) ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) |
9 |
7 8
|
sylib |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → ∃ 𝑤 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) |
10 |
|
simpllr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) |
11 |
|
vex |
⊢ 𝑏 ∈ V |
12 |
11
|
difexi |
⊢ ( 𝑏 ∖ 𝑤 ) ∈ V |
13 |
12
|
a1i |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑏 ∖ 𝑤 ) ∈ V ) |
14 |
|
disjdif |
⊢ ( 𝑤 ∩ ( 𝑏 ∖ 𝑤 ) ) = ∅ |
15 |
14
|
a1i |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑤 ∩ ( 𝑏 ∖ 𝑤 ) ) = ∅ ) |
16 |
|
hashunx |
⊢ ( ( 𝑤 ∈ ( LBasis ‘ 𝐾 ) ∧ ( 𝑏 ∖ 𝑤 ) ∈ V ∧ ( 𝑤 ∩ ( 𝑏 ∖ 𝑤 ) ) = ∅ ) → ( ♯ ‘ ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) ) = ( ( ♯ ‘ 𝑤 ) +𝑒 ( ♯ ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
17 |
10 13 15 16
|
syl3anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ♯ ‘ ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) ) = ( ( ♯ ‘ 𝑤 ) +𝑒 ( ♯ ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
18 |
|
simp-4l |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑉 ∈ LVec ) |
19 |
|
simpr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑤 ⊆ 𝑏 ) |
20 |
|
undif |
⊢ ( 𝑤 ⊆ 𝑏 ↔ ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) = 𝑏 ) |
21 |
19 20
|
sylib |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) = 𝑏 ) |
22 |
|
simplr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) |
23 |
21 22
|
eqeltrd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LBasis ‘ 𝑉 ) ) |
24 |
|
eqid |
⊢ ( LBasis ‘ 𝑉 ) = ( LBasis ‘ 𝑉 ) |
25 |
24
|
dimval |
⊢ ( ( 𝑉 ∈ LVec ∧ ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LBasis ‘ 𝑉 ) ) → ( dim ‘ 𝑉 ) = ( ♯ ‘ ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) ) ) |
26 |
18 23 25
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( dim ‘ 𝑉 ) = ( ♯ ‘ ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) ) ) |
27 |
4
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝐾 ∈ LVec ) |
28 |
5
|
dimval |
⊢ ( ( 𝐾 ∈ LVec ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( dim ‘ 𝐾 ) = ( ♯ ‘ 𝑤 ) ) |
29 |
27 10 28
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( dim ‘ 𝐾 ) = ( ♯ ‘ 𝑤 ) ) |
30 |
3
|
imlmhm |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝐼 ∈ LVec ) |
31 |
30
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝐼 ∈ LVec ) |
32 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) |
33 |
|
lmhmlmod2 |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → 𝑈 ∈ LMod ) |
34 |
32 33
|
syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑈 ∈ LMod ) |
35 |
|
lmhmrnlss |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ran 𝐹 ∈ ( LSubSp ‘ 𝑈 ) ) |
36 |
32 35
|
syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ran 𝐹 ∈ ( LSubSp ‘ 𝑈 ) ) |
37 |
|
df-ima |
⊢ ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) = ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
38 |
|
imassrn |
⊢ ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ⊆ ran 𝐹 |
39 |
38
|
a1i |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ⊆ ran 𝐹 ) |
40 |
37 39
|
eqsstrrid |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ⊆ ran 𝐹 ) |
41 |
|
lveclmod |
⊢ ( 𝑉 ∈ LVec → 𝑉 ∈ LMod ) |
42 |
41
|
ad4antr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑉 ∈ LMod ) |
43 |
24
|
lbslinds |
⊢ ( LBasis ‘ 𝑉 ) ⊆ ( LIndS ‘ 𝑉 ) |
44 |
43 22
|
sselid |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑏 ∈ ( LIndS ‘ 𝑉 ) ) |
45 |
|
difssd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑏 ∖ 𝑤 ) ⊆ 𝑏 ) |
46 |
|
lindsss |
⊢ ( ( 𝑉 ∈ LMod ∧ 𝑏 ∈ ( LIndS ‘ 𝑉 ) ∧ ( 𝑏 ∖ 𝑤 ) ⊆ 𝑏 ) → ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ 𝑉 ) ) |
47 |
42 44 45 46
|
syl3anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ 𝑉 ) ) |
48 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
49 |
48
|
linds1 |
⊢ ( ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ 𝑉 ) → ( 𝑏 ∖ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) |
50 |
47 49
|
syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑏 ∖ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) |
51 |
|
eqid |
⊢ ( LSubSp ‘ 𝑉 ) = ( LSubSp ‘ 𝑉 ) |
52 |
|
eqid |
⊢ ( LSpan ‘ 𝑉 ) = ( LSpan ‘ 𝑉 ) |
53 |
48 51 52
|
lspcl |
⊢ ( ( 𝑉 ∈ LMod ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ) |
54 |
42 50 53
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ) |
55 |
|
eqid |
⊢ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) = ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
56 |
51 55
|
reslmhm |
⊢ ( ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMHom 𝑈 ) ) |
57 |
32 54 56
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMHom 𝑈 ) ) |
58 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
59 |
3 58
|
reslmhm2b |
⊢ ( ( 𝑈 ∈ LMod ∧ ran 𝐹 ∈ ( LSubSp ‘ 𝑈 ) ∧ ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ⊆ ran 𝐹 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMHom 𝑈 ) ↔ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMHom 𝐼 ) ) ) |
60 |
59
|
biimpa |
⊢ ( ( ( 𝑈 ∈ LMod ∧ ran 𝐹 ∈ ( LSubSp ‘ 𝑈 ) ∧ ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ⊆ ran 𝐹 ) ∧ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMHom 𝑈 ) ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMHom 𝐼 ) ) |
61 |
34 36 40 57 60
|
syl31anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMHom 𝐼 ) ) |
62 |
|
lmghm |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → 𝐹 ∈ ( 𝑉 GrpHom 𝑈 ) ) |
63 |
62
|
ad4antlr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝐹 ∈ ( 𝑉 GrpHom 𝑈 ) ) |
64 |
48 24
|
lbsss |
⊢ ( 𝑏 ∈ ( LBasis ‘ 𝑉 ) → 𝑏 ⊆ ( Base ‘ 𝑉 ) ) |
65 |
22 64
|
syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑏 ⊆ ( Base ‘ 𝑉 ) ) |
66 |
45 65
|
sstrd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑏 ∖ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) |
67 |
42 66 53
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ) |
68 |
51
|
lsssubg |
⊢ ( ( 𝑉 ∈ LMod ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( SubGrp ‘ 𝑉 ) ) |
69 |
42 67 68
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( SubGrp ‘ 𝑉 ) ) |
70 |
55
|
resghm |
⊢ ( ( 𝐹 ∈ ( 𝑉 GrpHom 𝑈 ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( SubGrp ‘ 𝑉 ) ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) GrpHom 𝑈 ) ) |
71 |
63 69 70
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) GrpHom 𝑈 ) ) |
72 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
73 |
48 72
|
lmhmf |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑈 ) ) |
74 |
73
|
ad4antlr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑈 ) ) |
75 |
74
|
ffnd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝐹 Fn ( Base ‘ 𝑉 ) ) |
76 |
48 52
|
lspssv |
⊢ ( ( 𝑉 ∈ LMod ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) |
77 |
42 66 76
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) |
78 |
|
fnssres |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑉 ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) Fn ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
79 |
75 77 78
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) Fn ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
80 |
|
fniniseg |
⊢ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) Fn ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) → ( 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ↔ ( 𝑥 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∧ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ 𝑥 ) = 0 ) ) ) |
81 |
80
|
biimpa |
⊢ ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) Fn ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → ( 𝑥 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∧ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ 𝑥 ) = 0 ) ) |
82 |
79 81
|
sylan |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → ( 𝑥 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∧ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ 𝑥 ) = 0 ) ) |
83 |
82
|
simpld |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → 𝑥 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
84 |
75
|
adantr |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → 𝐹 Fn ( Base ‘ 𝑉 ) ) |
85 |
77
|
adantr |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) |
86 |
85 83
|
sseldd |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → 𝑥 ∈ ( Base ‘ 𝑉 ) ) |
87 |
83
|
fvresd |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
88 |
82
|
simprd |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ 𝑥 ) = 0 ) |
89 |
87 88
|
eqtr3d |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
90 |
|
fniniseg |
⊢ ( 𝐹 Fn ( Base ‘ 𝑉 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) |
91 |
90
|
biimpar |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) |
92 |
84 86 89 91
|
syl12anc |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) |
93 |
83 92
|
elind |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → 𝑥 ∈ ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∩ ( ◡ 𝐹 “ { 0 } ) ) ) |
94 |
|
simpr |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) |
95 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
96 |
|
eqid |
⊢ ( LSpan ‘ 𝐾 ) = ( LSpan ‘ 𝐾 ) |
97 |
95 5 96
|
lbssp |
⊢ ( 𝑤 ∈ ( LBasis ‘ 𝐾 ) → ( ( LSpan ‘ 𝐾 ) ‘ 𝑤 ) = ( Base ‘ 𝐾 ) ) |
98 |
94 97
|
syl |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( ( LSpan ‘ 𝐾 ) ‘ 𝑤 ) = ( Base ‘ 𝐾 ) ) |
99 |
41
|
ad2antrr |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑉 ∈ LMod ) |
100 |
|
eqid |
⊢ ( ◡ 𝐹 “ { 0 } ) = ( ◡ 𝐹 “ { 0 } ) |
101 |
100 1 51
|
lmhmkerlss |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) ) |
102 |
101
|
ad2antlr |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) ) |
103 |
95 5
|
lbsss |
⊢ ( 𝑤 ∈ ( LBasis ‘ 𝐾 ) → 𝑤 ⊆ ( Base ‘ 𝐾 ) ) |
104 |
94 103
|
syl |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑤 ⊆ ( Base ‘ 𝐾 ) ) |
105 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ { 0 } ) ⊆ dom 𝐹 |
106 |
105 73
|
fssdm |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ( ◡ 𝐹 “ { 0 } ) ⊆ ( Base ‘ 𝑉 ) ) |
107 |
2 48
|
ressbas2 |
⊢ ( ( ◡ 𝐹 “ { 0 } ) ⊆ ( Base ‘ 𝑉 ) → ( ◡ 𝐹 “ { 0 } ) = ( Base ‘ 𝐾 ) ) |
108 |
106 107
|
syl |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ( ◡ 𝐹 “ { 0 } ) = ( Base ‘ 𝐾 ) ) |
109 |
108
|
ad2antlr |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( ◡ 𝐹 “ { 0 } ) = ( Base ‘ 𝐾 ) ) |
110 |
104 109
|
sseqtrrd |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑤 ⊆ ( ◡ 𝐹 “ { 0 } ) ) |
111 |
2 52 96 51
|
lsslsp |
⊢ ( ( 𝑉 ∈ LMod ∧ ( ◡ 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) ∧ 𝑤 ⊆ ( ◡ 𝐹 “ { 0 } ) ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) = ( ( LSpan ‘ 𝐾 ) ‘ 𝑤 ) ) |
112 |
99 102 110 111
|
syl3anc |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) = ( ( LSpan ‘ 𝐾 ) ‘ 𝑤 ) ) |
113 |
98 112 109
|
3eqtr4d |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) = ( ◡ 𝐹 “ { 0 } ) ) |
114 |
113
|
ad2antrr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) = ( ◡ 𝐹 “ { 0 } ) ) |
115 |
114
|
ineq2d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∩ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) = ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∩ ( ◡ 𝐹 “ { 0 } ) ) ) |
116 |
|
eqid |
⊢ ( 0g ‘ 𝑉 ) = ( 0g ‘ 𝑉 ) |
117 |
24 52 116
|
lbsdiflsp0 |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∩ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) = { ( 0g ‘ 𝑉 ) } ) |
118 |
117
|
ad5ant145 |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∩ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) = { ( 0g ‘ 𝑉 ) } ) |
119 |
115 118
|
eqtr3d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∩ ( ◡ 𝐹 “ { 0 } ) ) = { ( 0g ‘ 𝑉 ) } ) |
120 |
119
|
adantr |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∩ ( ◡ 𝐹 “ { 0 } ) ) = { ( 0g ‘ 𝑉 ) } ) |
121 |
93 120
|
eleqtrd |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → 𝑥 ∈ { ( 0g ‘ 𝑉 ) } ) |
122 |
121
|
ex |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) → 𝑥 ∈ { ( 0g ‘ 𝑉 ) } ) ) |
123 |
122
|
ssrdv |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ⊆ { ( 0g ‘ 𝑉 ) } ) |
124 |
116 48 52
|
0ellsp |
⊢ ( ( 𝑉 ∈ LMod ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) → ( 0g ‘ 𝑉 ) ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
125 |
42 66 124
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 0g ‘ 𝑉 ) ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
126 |
|
fvexd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) ∈ V ) |
127 |
125
|
fvresd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑉 ) ) ) |
128 |
116 1
|
ghmid |
⊢ ( 𝐹 ∈ ( 𝑉 GrpHom 𝑈 ) → ( 𝐹 ‘ ( 0g ‘ 𝑉 ) ) = 0 ) |
129 |
62 128
|
syl |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ( 𝐹 ‘ ( 0g ‘ 𝑉 ) ) = 0 ) |
130 |
129
|
ad4antlr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ‘ ( 0g ‘ 𝑉 ) ) = 0 ) |
131 |
127 130
|
eqtrd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) = 0 ) |
132 |
|
elsng |
⊢ ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) ∈ V → ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) ∈ { 0 } ↔ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) = 0 ) ) |
133 |
132
|
biimpar |
⊢ ( ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) ∈ V ∧ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) = 0 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) ∈ { 0 } ) |
134 |
126 131 133
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) ∈ { 0 } ) |
135 |
79 125 134
|
elpreimad |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 0g ‘ 𝑉 ) ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) |
136 |
135
|
snssd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → { ( 0g ‘ 𝑉 ) } ⊆ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) |
137 |
123 136
|
eqssd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) = { ( 0g ‘ 𝑉 ) } ) |
138 |
|
lmodgrp |
⊢ ( 𝑉 ∈ LMod → 𝑉 ∈ Grp ) |
139 |
|
grpmnd |
⊢ ( 𝑉 ∈ Grp → 𝑉 ∈ Mnd ) |
140 |
42 138 139
|
3syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑉 ∈ Mnd ) |
141 |
55 48 116
|
ress0g |
⊢ ( ( 𝑉 ∈ Mnd ∧ ( 0g ‘ 𝑉 ) ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) → ( 0g ‘ 𝑉 ) = ( 0g ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) |
142 |
140 125 77 141
|
syl3anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 0g ‘ 𝑉 ) = ( 0g ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) |
143 |
142
|
sneqd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → { ( 0g ‘ 𝑉 ) } = { ( 0g ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) } ) |
144 |
137 143
|
eqtrd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) = { ( 0g ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) } ) |
145 |
|
eqid |
⊢ ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) = ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
146 |
|
eqid |
⊢ ( 0g ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) = ( 0g ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
147 |
145 72 146 1
|
kerf1ghm |
⊢ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) GrpHom 𝑈 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) –1-1→ ( Base ‘ 𝑈 ) ↔ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) = { ( 0g ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) } ) ) |
148 |
147
|
biimpar |
⊢ ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) GrpHom 𝑈 ) ∧ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) = { ( 0g ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) } ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) –1-1→ ( Base ‘ 𝑈 ) ) |
149 |
71 144 148
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) –1-1→ ( Base ‘ 𝑈 ) ) |
150 |
|
eqidd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) = ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
151 |
55 48
|
ressbas2 |
⊢ ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) = ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) |
152 |
77 151
|
syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) = ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) |
153 |
|
eqidd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) ) |
154 |
150 152 153
|
f1eq123d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1→ ( Base ‘ 𝑈 ) ↔ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) –1-1→ ( Base ‘ 𝑈 ) ) ) |
155 |
149 154
|
mpbird |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1→ ( Base ‘ 𝑈 ) ) |
156 |
|
f1ssr |
⊢ ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1→ ( Base ‘ 𝑈 ) ∧ ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ⊆ ran 𝐹 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1→ ran 𝐹 ) |
157 |
155 40 156
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1→ ran 𝐹 ) |
158 |
|
f1f1orn |
⊢ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1→ ran 𝐹 → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1-onto→ ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
159 |
157 158
|
syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1-onto→ ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
160 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
161 |
75
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝐹 Fn ( Base ‘ 𝑉 ) ) |
162 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) |
163 |
113
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) = ( ◡ 𝐹 “ { 0 } ) ) |
164 |
162 163
|
eleqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝑢 ∈ ( ◡ 𝐹 “ { 0 } ) ) |
165 |
|
fniniseg |
⊢ ( 𝐹 Fn ( Base ‘ 𝑉 ) → ( 𝑢 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑢 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝐹 ‘ 𝑢 ) = 0 ) ) ) |
166 |
165
|
simplbda |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑉 ) ∧ 𝑢 ∈ ( ◡ 𝐹 “ { 0 } ) ) → ( 𝐹 ‘ 𝑢 ) = 0 ) |
167 |
161 164 166
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( 𝐹 ‘ 𝑢 ) = 0 ) |
168 |
167
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( ( 𝐹 ‘ 𝑢 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑣 ) ) = ( 0 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑣 ) ) ) |
169 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) |
170 |
169
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) ) |
171 |
63
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝐹 ∈ ( 𝑉 GrpHom 𝑈 ) ) |
172 |
48 52
|
lspss |
⊢ ( ( 𝑉 ∈ LMod ∧ 𝑏 ⊆ ( Base ‘ 𝑉 ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ 𝑏 ) ) |
173 |
42 65 19 172
|
syl3anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ 𝑏 ) ) |
174 |
48 24 52
|
lbssp |
⊢ ( 𝑏 ∈ ( LBasis ‘ 𝑉 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑏 ) = ( Base ‘ 𝑉 ) ) |
175 |
22 174
|
syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑏 ) = ( Base ‘ 𝑉 ) ) |
176 |
173 175
|
sseqtrd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) |
177 |
176
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) |
178 |
177
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) |
179 |
178 162
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝑢 ∈ ( Base ‘ 𝑉 ) ) |
180 |
77
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) |
181 |
180
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) |
182 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
183 |
181 182
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝑣 ∈ ( Base ‘ 𝑉 ) ) |
184 |
|
eqid |
⊢ ( +g ‘ 𝑉 ) = ( +g ‘ 𝑉 ) |
185 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
186 |
48 184 185
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( 𝑉 GrpHom 𝑈 ) ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ∧ 𝑣 ∈ ( Base ‘ 𝑉 ) ) → ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑣 ) ) ) |
187 |
171 179 183 186
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑣 ) ) ) |
188 |
170 187
|
eqtr2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( ( 𝐹 ‘ 𝑢 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑣 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
189 |
|
lmhmlvec2 |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝑈 ∈ LVec ) |
190 |
|
lveclmod |
⊢ ( 𝑈 ∈ LVec → 𝑈 ∈ LMod ) |
191 |
|
lmodgrp |
⊢ ( 𝑈 ∈ LMod → 𝑈 ∈ Grp ) |
192 |
189 190 191
|
3syl |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝑈 ∈ Grp ) |
193 |
192
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝑈 ∈ Grp ) |
194 |
74
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑈 ) ) |
195 |
194 183
|
ffvelrnd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( 𝐹 ‘ 𝑣 ) ∈ ( Base ‘ 𝑈 ) ) |
196 |
72 185 1
|
grplid |
⊢ ( ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 𝑣 ) ∈ ( Base ‘ 𝑈 ) ) → ( 0 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑣 ) ) = ( 𝐹 ‘ 𝑣 ) ) |
197 |
193 195 196
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( 0 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑣 ) ) = ( 𝐹 ‘ 𝑣 ) ) |
198 |
168 188 197
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑣 ) ) |
199 |
160 198
|
eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝑦 = ( 𝐹 ‘ 𝑣 ) ) |
200 |
161 183 182
|
fnfvimad |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( 𝐹 ‘ 𝑣 ) ∈ ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
201 |
199 200
|
eqeltrd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝑦 ∈ ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
202 |
|
simp-7l |
⊢ ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑉 ∈ LVec ) |
203 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑥 ∈ ( Base ‘ 𝑉 ) ) |
204 |
110
|
ad2antrr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑤 ⊆ ( ◡ 𝐹 “ { 0 } ) ) |
205 |
106
|
ad4antlr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ◡ 𝐹 “ { 0 } ) ⊆ ( Base ‘ 𝑉 ) ) |
206 |
204 205
|
sstrd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑤 ⊆ ( Base ‘ 𝑉 ) ) |
207 |
|
eqid |
⊢ ( LSSum ‘ 𝑉 ) = ( LSSum ‘ 𝑉 ) |
208 |
48 52 207
|
lsmsp2 |
⊢ ( ( 𝑉 ∈ LMod ∧ 𝑤 ⊆ ( Base ‘ 𝑉 ) ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) → ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) = ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) ) ) |
209 |
42 206 66 208
|
syl3anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) = ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) ) ) |
210 |
21
|
fveq2d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) ) = ( ( LSpan ‘ 𝑉 ) ‘ 𝑏 ) ) |
211 |
209 210 175
|
3eqtrrd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( Base ‘ 𝑉 ) = ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
212 |
211
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( Base ‘ 𝑉 ) = ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
213 |
203 212
|
eleqtrd |
⊢ ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑥 ∈ ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
214 |
48 184 207
|
lsmelvalx |
⊢ ( ( 𝑉 ∈ LVec ∧ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) → ( 𝑥 ∈ ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ↔ ∃ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ∃ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) ) |
215 |
214
|
biimpa |
⊢ ( ( ( 𝑉 ∈ LVec ∧ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) ∧ 𝑥 ∈ ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) → ∃ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ∃ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) |
216 |
202 177 180 213 215
|
syl31anc |
⊢ ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ∃ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ∃ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) |
217 |
201 216
|
r19.29vva |
⊢ ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
218 |
|
fvelrnb |
⊢ ( 𝐹 Fn ( Base ‘ 𝑉 ) → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝑉 ) ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
219 |
218
|
biimpa |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑉 ) ∧ 𝑦 ∈ ran 𝐹 ) → ∃ 𝑥 ∈ ( Base ‘ 𝑉 ) ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
220 |
75 219
|
sylan |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) → ∃ 𝑥 ∈ ( Base ‘ 𝑉 ) ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
221 |
217 220
|
r19.29a |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
222 |
39 221
|
eqelssd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) = ran 𝐹 ) |
223 |
37 222
|
eqtr3id |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) = ran 𝐹 ) |
224 |
223
|
f1oeq3d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1-onto→ ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ↔ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1-onto→ ran 𝐹 ) ) |
225 |
159 224
|
mpbid |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1-onto→ ran 𝐹 ) |
226 |
42 50 76
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) |
227 |
226 151
|
syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) = ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) |
228 |
|
frn |
⊢ ( 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑈 ) → ran 𝐹 ⊆ ( Base ‘ 𝑈 ) ) |
229 |
3 72
|
ressbas2 |
⊢ ( ran 𝐹 ⊆ ( Base ‘ 𝑈 ) → ran 𝐹 = ( Base ‘ 𝐼 ) ) |
230 |
73 228 229
|
3syl |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ran 𝐹 = ( Base ‘ 𝐼 ) ) |
231 |
32 230
|
syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ran 𝐹 = ( Base ‘ 𝐼 ) ) |
232 |
150 227 231
|
f1oeq123d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1-onto→ ran 𝐹 ↔ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) –1-1-onto→ ( Base ‘ 𝐼 ) ) ) |
233 |
225 232
|
mpbid |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) –1-1-onto→ ( Base ‘ 𝐼 ) ) |
234 |
|
eqid |
⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) |
235 |
145 234
|
islmim |
⊢ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMIso 𝐼 ) ↔ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMHom 𝐼 ) ∧ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) –1-1-onto→ ( Base ‘ 𝐼 ) ) ) |
236 |
61 233 235
|
sylanbrc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMIso 𝐼 ) ) |
237 |
48 52
|
lspssid |
⊢ ( ( 𝑉 ∈ LMod ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) → ( 𝑏 ∖ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
238 |
42 50 237
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑏 ∖ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
239 |
51 55
|
lsslinds |
⊢ ( ( 𝑉 ∈ LMod ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) → ( ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ↔ ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ 𝑉 ) ) ) |
240 |
239
|
biimpar |
⊢ ( ( ( 𝑉 ∈ LMod ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ 𝑉 ) ) → ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) |
241 |
42 67 238 47 240
|
syl31anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) |
242 |
|
eqid |
⊢ ( LSpan ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) = ( LSpan ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
243 |
55 52 242 51
|
lsslsp |
⊢ ( ( 𝑉 ∈ LMod ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) = ( ( LSpan ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
244 |
42 54 238 243
|
syl3anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) = ( ( LSpan ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
245 |
244 227
|
eqtr3d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ‘ ( 𝑏 ∖ 𝑤 ) ) = ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) |
246 |
|
eqid |
⊢ ( LBasis ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) = ( LBasis ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
247 |
145 246 242
|
islbs4 |
⊢ ( ( 𝑏 ∖ 𝑤 ) ∈ ( LBasis ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ↔ ( ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ∧ ( ( LSpan ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ‘ ( 𝑏 ∖ 𝑤 ) ) = ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) ) |
248 |
241 245 247
|
sylanbrc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑏 ∖ 𝑤 ) ∈ ( LBasis ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) |
249 |
|
eqid |
⊢ ( LBasis ‘ 𝐼 ) = ( LBasis ‘ 𝐼 ) |
250 |
246 249
|
lmimlbs |
⊢ ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMIso 𝐼 ) ∧ ( 𝑏 ∖ 𝑤 ) ∈ ( LBasis ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LBasis ‘ 𝐼 ) ) |
251 |
236 248 250
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LBasis ‘ 𝐼 ) ) |
252 |
249
|
dimval |
⊢ ( ( 𝐼 ∈ LVec ∧ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LBasis ‘ 𝐼 ) ) → ( dim ‘ 𝐼 ) = ( ♯ ‘ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ) ) |
253 |
31 251 252
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( dim ‘ 𝐼 ) = ( ♯ ‘ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ) ) |
254 |
|
f1imaeng |
⊢ ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1→ ran 𝐹 ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∧ ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ 𝑉 ) ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ≈ ( 𝑏 ∖ 𝑤 ) ) |
255 |
|
hasheni |
⊢ ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ≈ ( 𝑏 ∖ 𝑤 ) → ( ♯ ‘ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ) = ( ♯ ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
256 |
254 255
|
syl |
⊢ ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1→ ran 𝐹 ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∧ ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ 𝑉 ) ) → ( ♯ ‘ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ) = ( ♯ ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
257 |
157 238 47 256
|
syl3anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ♯ ‘ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ) = ( ♯ ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
258 |
253 257
|
eqtrd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( dim ‘ 𝐼 ) = ( ♯ ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
259 |
29 258
|
oveq12d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( dim ‘ 𝐾 ) +𝑒 ( dim ‘ 𝐼 ) ) = ( ( ♯ ‘ 𝑤 ) +𝑒 ( ♯ ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
260 |
17 26 259
|
3eqtr4d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( dim ‘ 𝑉 ) = ( ( dim ‘ 𝐾 ) +𝑒 ( dim ‘ 𝐼 ) ) ) |
261 |
5
|
lbslinds |
⊢ ( LBasis ‘ 𝐾 ) ⊆ ( LIndS ‘ 𝐾 ) |
262 |
261 94
|
sselid |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑤 ∈ ( LIndS ‘ 𝐾 ) ) |
263 |
51 2
|
lsslinds |
⊢ ( ( 𝑉 ∈ LMod ∧ ( ◡ 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) ∧ 𝑤 ⊆ ( ◡ 𝐹 “ { 0 } ) ) → ( 𝑤 ∈ ( LIndS ‘ 𝐾 ) ↔ 𝑤 ∈ ( LIndS ‘ 𝑉 ) ) ) |
264 |
263
|
biimpa |
⊢ ( ( ( 𝑉 ∈ LMod ∧ ( ◡ 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) ∧ 𝑤 ⊆ ( ◡ 𝐹 “ { 0 } ) ) ∧ 𝑤 ∈ ( LIndS ‘ 𝐾 ) ) → 𝑤 ∈ ( LIndS ‘ 𝑉 ) ) |
265 |
99 102 110 262 264
|
syl31anc |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑤 ∈ ( LIndS ‘ 𝑉 ) ) |
266 |
24
|
islinds4 |
⊢ ( 𝑉 ∈ LVec → ( 𝑤 ∈ ( LIndS ‘ 𝑉 ) ↔ ∃ 𝑏 ∈ ( LBasis ‘ 𝑉 ) 𝑤 ⊆ 𝑏 ) ) |
267 |
266
|
ad2antrr |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( 𝑤 ∈ ( LIndS ‘ 𝑉 ) ↔ ∃ 𝑏 ∈ ( LBasis ‘ 𝑉 ) 𝑤 ⊆ 𝑏 ) ) |
268 |
265 267
|
mpbid |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ∃ 𝑏 ∈ ( LBasis ‘ 𝑉 ) 𝑤 ⊆ 𝑏 ) |
269 |
260 268
|
r19.29a |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( dim ‘ 𝑉 ) = ( ( dim ‘ 𝐾 ) +𝑒 ( dim ‘ 𝐼 ) ) ) |
270 |
9 269
|
exlimddv |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → ( dim ‘ 𝑉 ) = ( ( dim ‘ 𝐾 ) +𝑒 ( dim ‘ 𝐼 ) ) ) |