| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dimkerim.0 |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 2 |
|
dimkerim.k |
⊢ 𝐾 = ( 𝑉 ↾s ( ◡ 𝐹 “ { 0 } ) ) |
| 3 |
|
dimkerim.i |
⊢ 𝐼 = ( 𝑈 ↾s ran 𝐹 ) |
| 4 |
1 2
|
kerlmhm |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝐾 ∈ LVec ) |
| 5 |
|
eqid |
⊢ ( LBasis ‘ 𝐾 ) = ( LBasis ‘ 𝐾 ) |
| 6 |
5
|
lbsex |
⊢ ( 𝐾 ∈ LVec → ( LBasis ‘ 𝐾 ) ≠ ∅ ) |
| 7 |
4 6
|
syl |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → ( LBasis ‘ 𝐾 ) ≠ ∅ ) |
| 8 |
|
n0 |
⊢ ( ( LBasis ‘ 𝐾 ) ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) |
| 9 |
7 8
|
sylib |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → ∃ 𝑤 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) |
| 10 |
|
simpllr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) |
| 11 |
|
vex |
⊢ 𝑏 ∈ V |
| 12 |
11
|
difexi |
⊢ ( 𝑏 ∖ 𝑤 ) ∈ V |
| 13 |
12
|
a1i |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑏 ∖ 𝑤 ) ∈ V ) |
| 14 |
|
disjdif |
⊢ ( 𝑤 ∩ ( 𝑏 ∖ 𝑤 ) ) = ∅ |
| 15 |
14
|
a1i |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑤 ∩ ( 𝑏 ∖ 𝑤 ) ) = ∅ ) |
| 16 |
|
hashunx |
⊢ ( ( 𝑤 ∈ ( LBasis ‘ 𝐾 ) ∧ ( 𝑏 ∖ 𝑤 ) ∈ V ∧ ( 𝑤 ∩ ( 𝑏 ∖ 𝑤 ) ) = ∅ ) → ( ♯ ‘ ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) ) = ( ( ♯ ‘ 𝑤 ) +𝑒 ( ♯ ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 17 |
10 13 15 16
|
syl3anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ♯ ‘ ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) ) = ( ( ♯ ‘ 𝑤 ) +𝑒 ( ♯ ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 18 |
|
simp-4l |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑉 ∈ LVec ) |
| 19 |
|
simpr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑤 ⊆ 𝑏 ) |
| 20 |
|
undif |
⊢ ( 𝑤 ⊆ 𝑏 ↔ ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) = 𝑏 ) |
| 21 |
19 20
|
sylib |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) = 𝑏 ) |
| 22 |
|
simplr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) |
| 23 |
21 22
|
eqeltrd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LBasis ‘ 𝑉 ) ) |
| 24 |
|
eqid |
⊢ ( LBasis ‘ 𝑉 ) = ( LBasis ‘ 𝑉 ) |
| 25 |
24
|
dimval |
⊢ ( ( 𝑉 ∈ LVec ∧ ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LBasis ‘ 𝑉 ) ) → ( dim ‘ 𝑉 ) = ( ♯ ‘ ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 26 |
18 23 25
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( dim ‘ 𝑉 ) = ( ♯ ‘ ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 27 |
4
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝐾 ∈ LVec ) |
| 28 |
5
|
dimval |
⊢ ( ( 𝐾 ∈ LVec ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( dim ‘ 𝐾 ) = ( ♯ ‘ 𝑤 ) ) |
| 29 |
27 10 28
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( dim ‘ 𝐾 ) = ( ♯ ‘ 𝑤 ) ) |
| 30 |
3
|
imlmhm |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝐼 ∈ LVec ) |
| 31 |
30
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝐼 ∈ LVec ) |
| 32 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) |
| 33 |
|
lmhmlmod2 |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → 𝑈 ∈ LMod ) |
| 34 |
32 33
|
syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑈 ∈ LMod ) |
| 35 |
|
lmhmrnlss |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ran 𝐹 ∈ ( LSubSp ‘ 𝑈 ) ) |
| 36 |
32 35
|
syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ran 𝐹 ∈ ( LSubSp ‘ 𝑈 ) ) |
| 37 |
|
df-ima |
⊢ ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) = ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
| 38 |
|
imassrn |
⊢ ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ⊆ ran 𝐹 |
| 39 |
38
|
a1i |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ⊆ ran 𝐹 ) |
| 40 |
37 39
|
eqsstrrid |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ⊆ ran 𝐹 ) |
| 41 |
|
lveclmod |
⊢ ( 𝑉 ∈ LVec → 𝑉 ∈ LMod ) |
| 42 |
41
|
ad4antr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑉 ∈ LMod ) |
| 43 |
24
|
lbslinds |
⊢ ( LBasis ‘ 𝑉 ) ⊆ ( LIndS ‘ 𝑉 ) |
| 44 |
43 22
|
sselid |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑏 ∈ ( LIndS ‘ 𝑉 ) ) |
| 45 |
|
difssd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑏 ∖ 𝑤 ) ⊆ 𝑏 ) |
| 46 |
|
lindsss |
⊢ ( ( 𝑉 ∈ LMod ∧ 𝑏 ∈ ( LIndS ‘ 𝑉 ) ∧ ( 𝑏 ∖ 𝑤 ) ⊆ 𝑏 ) → ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ 𝑉 ) ) |
| 47 |
42 44 45 46
|
syl3anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ 𝑉 ) ) |
| 48 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
| 49 |
48
|
linds1 |
⊢ ( ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ 𝑉 ) → ( 𝑏 ∖ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) |
| 50 |
47 49
|
syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑏 ∖ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) |
| 51 |
|
eqid |
⊢ ( LSubSp ‘ 𝑉 ) = ( LSubSp ‘ 𝑉 ) |
| 52 |
|
eqid |
⊢ ( LSpan ‘ 𝑉 ) = ( LSpan ‘ 𝑉 ) |
| 53 |
48 51 52
|
lspcl |
⊢ ( ( 𝑉 ∈ LMod ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ) |
| 54 |
42 50 53
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ) |
| 55 |
|
eqid |
⊢ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) = ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
| 56 |
51 55
|
reslmhm |
⊢ ( ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMHom 𝑈 ) ) |
| 57 |
32 54 56
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMHom 𝑈 ) ) |
| 58 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 59 |
3 58
|
reslmhm2b |
⊢ ( ( 𝑈 ∈ LMod ∧ ran 𝐹 ∈ ( LSubSp ‘ 𝑈 ) ∧ ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ⊆ ran 𝐹 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMHom 𝑈 ) ↔ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMHom 𝐼 ) ) ) |
| 60 |
59
|
biimpa |
⊢ ( ( ( 𝑈 ∈ LMod ∧ ran 𝐹 ∈ ( LSubSp ‘ 𝑈 ) ∧ ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ⊆ ran 𝐹 ) ∧ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMHom 𝑈 ) ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMHom 𝐼 ) ) |
| 61 |
34 36 40 57 60
|
syl31anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMHom 𝐼 ) ) |
| 62 |
|
lmghm |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → 𝐹 ∈ ( 𝑉 GrpHom 𝑈 ) ) |
| 63 |
62
|
ad4antlr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝐹 ∈ ( 𝑉 GrpHom 𝑈 ) ) |
| 64 |
48 24
|
lbsss |
⊢ ( 𝑏 ∈ ( LBasis ‘ 𝑉 ) → 𝑏 ⊆ ( Base ‘ 𝑉 ) ) |
| 65 |
22 64
|
syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑏 ⊆ ( Base ‘ 𝑉 ) ) |
| 66 |
45 65
|
sstrd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑏 ∖ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) |
| 67 |
42 66 53
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ) |
| 68 |
51
|
lsssubg |
⊢ ( ( 𝑉 ∈ LMod ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( SubGrp ‘ 𝑉 ) ) |
| 69 |
42 67 68
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( SubGrp ‘ 𝑉 ) ) |
| 70 |
55
|
resghm |
⊢ ( ( 𝐹 ∈ ( 𝑉 GrpHom 𝑈 ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( SubGrp ‘ 𝑉 ) ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) GrpHom 𝑈 ) ) |
| 71 |
63 69 70
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) GrpHom 𝑈 ) ) |
| 72 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 73 |
48 72
|
lmhmf |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑈 ) ) |
| 74 |
73
|
ad4antlr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑈 ) ) |
| 75 |
74
|
ffnd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝐹 Fn ( Base ‘ 𝑉 ) ) |
| 76 |
48 52
|
lspssv |
⊢ ( ( 𝑉 ∈ LMod ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) |
| 77 |
42 66 76
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) |
| 78 |
75 77
|
fnssresd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) Fn ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
| 79 |
|
fniniseg |
⊢ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) Fn ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) → ( 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ↔ ( 𝑥 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∧ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ 𝑥 ) = 0 ) ) ) |
| 80 |
79
|
biimpa |
⊢ ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) Fn ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → ( 𝑥 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∧ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ 𝑥 ) = 0 ) ) |
| 81 |
78 80
|
sylan |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → ( 𝑥 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∧ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ 𝑥 ) = 0 ) ) |
| 82 |
81
|
simpld |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → 𝑥 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
| 83 |
75
|
adantr |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → 𝐹 Fn ( Base ‘ 𝑉 ) ) |
| 84 |
77
|
adantr |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) |
| 85 |
84 82
|
sseldd |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → 𝑥 ∈ ( Base ‘ 𝑉 ) ) |
| 86 |
82
|
fvresd |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 87 |
81
|
simprd |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ 𝑥 ) = 0 ) |
| 88 |
86 87
|
eqtr3d |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 89 |
|
fniniseg |
⊢ ( 𝐹 Fn ( Base ‘ 𝑉 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) |
| 90 |
89
|
biimpar |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) |
| 91 |
83 85 88 90
|
syl12anc |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) |
| 92 |
82 91
|
elind |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → 𝑥 ∈ ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∩ ( ◡ 𝐹 “ { 0 } ) ) ) |
| 93 |
|
simpr |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) |
| 94 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 95 |
|
eqid |
⊢ ( LSpan ‘ 𝐾 ) = ( LSpan ‘ 𝐾 ) |
| 96 |
94 5 95
|
lbssp |
⊢ ( 𝑤 ∈ ( LBasis ‘ 𝐾 ) → ( ( LSpan ‘ 𝐾 ) ‘ 𝑤 ) = ( Base ‘ 𝐾 ) ) |
| 97 |
93 96
|
syl |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( ( LSpan ‘ 𝐾 ) ‘ 𝑤 ) = ( Base ‘ 𝐾 ) ) |
| 98 |
41
|
ad2antrr |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑉 ∈ LMod ) |
| 99 |
|
eqid |
⊢ ( ◡ 𝐹 “ { 0 } ) = ( ◡ 𝐹 “ { 0 } ) |
| 100 |
99 1 51
|
lmhmkerlss |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) ) |
| 101 |
100
|
ad2antlr |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) ) |
| 102 |
94 5
|
lbsss |
⊢ ( 𝑤 ∈ ( LBasis ‘ 𝐾 ) → 𝑤 ⊆ ( Base ‘ 𝐾 ) ) |
| 103 |
93 102
|
syl |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑤 ⊆ ( Base ‘ 𝐾 ) ) |
| 104 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ { 0 } ) ⊆ dom 𝐹 |
| 105 |
104 73
|
fssdm |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ( ◡ 𝐹 “ { 0 } ) ⊆ ( Base ‘ 𝑉 ) ) |
| 106 |
2 48
|
ressbas2 |
⊢ ( ( ◡ 𝐹 “ { 0 } ) ⊆ ( Base ‘ 𝑉 ) → ( ◡ 𝐹 “ { 0 } ) = ( Base ‘ 𝐾 ) ) |
| 107 |
105 106
|
syl |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ( ◡ 𝐹 “ { 0 } ) = ( Base ‘ 𝐾 ) ) |
| 108 |
107
|
ad2antlr |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( ◡ 𝐹 “ { 0 } ) = ( Base ‘ 𝐾 ) ) |
| 109 |
103 108
|
sseqtrrd |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑤 ⊆ ( ◡ 𝐹 “ { 0 } ) ) |
| 110 |
2 52 95 51
|
lsslsp |
⊢ ( ( 𝑉 ∈ LMod ∧ ( ◡ 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) ∧ 𝑤 ⊆ ( ◡ 𝐹 “ { 0 } ) ) → ( ( LSpan ‘ 𝐾 ) ‘ 𝑤 ) = ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) |
| 111 |
110
|
eqcomd |
⊢ ( ( 𝑉 ∈ LMod ∧ ( ◡ 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) ∧ 𝑤 ⊆ ( ◡ 𝐹 “ { 0 } ) ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) = ( ( LSpan ‘ 𝐾 ) ‘ 𝑤 ) ) |
| 112 |
98 101 109 111
|
syl3anc |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) = ( ( LSpan ‘ 𝐾 ) ‘ 𝑤 ) ) |
| 113 |
97 112 108
|
3eqtr4d |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) = ( ◡ 𝐹 “ { 0 } ) ) |
| 114 |
113
|
ad2antrr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) = ( ◡ 𝐹 “ { 0 } ) ) |
| 115 |
114
|
ineq2d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∩ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) = ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∩ ( ◡ 𝐹 “ { 0 } ) ) ) |
| 116 |
|
eqid |
⊢ ( 0g ‘ 𝑉 ) = ( 0g ‘ 𝑉 ) |
| 117 |
24 52 116
|
lbsdiflsp0 |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∩ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) = { ( 0g ‘ 𝑉 ) } ) |
| 118 |
117
|
ad5ant145 |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∩ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) = { ( 0g ‘ 𝑉 ) } ) |
| 119 |
115 118
|
eqtr3d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∩ ( ◡ 𝐹 “ { 0 } ) ) = { ( 0g ‘ 𝑉 ) } ) |
| 120 |
119
|
adantr |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∩ ( ◡ 𝐹 “ { 0 } ) ) = { ( 0g ‘ 𝑉 ) } ) |
| 121 |
92 120
|
eleqtrd |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) → 𝑥 ∈ { ( 0g ‘ 𝑉 ) } ) |
| 122 |
121
|
ex |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑥 ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) → 𝑥 ∈ { ( 0g ‘ 𝑉 ) } ) ) |
| 123 |
122
|
ssrdv |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ⊆ { ( 0g ‘ 𝑉 ) } ) |
| 124 |
116 48 52
|
0ellsp |
⊢ ( ( 𝑉 ∈ LMod ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) → ( 0g ‘ 𝑉 ) ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
| 125 |
42 66 124
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 0g ‘ 𝑉 ) ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
| 126 |
|
fvexd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) ∈ V ) |
| 127 |
125
|
fvresd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑉 ) ) ) |
| 128 |
116 1
|
ghmid |
⊢ ( 𝐹 ∈ ( 𝑉 GrpHom 𝑈 ) → ( 𝐹 ‘ ( 0g ‘ 𝑉 ) ) = 0 ) |
| 129 |
62 128
|
syl |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ( 𝐹 ‘ ( 0g ‘ 𝑉 ) ) = 0 ) |
| 130 |
129
|
ad4antlr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ‘ ( 0g ‘ 𝑉 ) ) = 0 ) |
| 131 |
127 130
|
eqtrd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) = 0 ) |
| 132 |
|
elsng |
⊢ ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) ∈ V → ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) ∈ { 0 } ↔ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) = 0 ) ) |
| 133 |
132
|
biimpar |
⊢ ( ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) ∈ V ∧ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) = 0 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) ∈ { 0 } ) |
| 134 |
126 131 133
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ‘ ( 0g ‘ 𝑉 ) ) ∈ { 0 } ) |
| 135 |
78 125 134
|
elpreimad |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 0g ‘ 𝑉 ) ∈ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) |
| 136 |
135
|
snssd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → { ( 0g ‘ 𝑉 ) } ⊆ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) ) |
| 137 |
123 136
|
eqssd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) = { ( 0g ‘ 𝑉 ) } ) |
| 138 |
|
lmodgrp |
⊢ ( 𝑉 ∈ LMod → 𝑉 ∈ Grp ) |
| 139 |
|
grpmnd |
⊢ ( 𝑉 ∈ Grp → 𝑉 ∈ Mnd ) |
| 140 |
42 138 139
|
3syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑉 ∈ Mnd ) |
| 141 |
55 48 116
|
ress0g |
⊢ ( ( 𝑉 ∈ Mnd ∧ ( 0g ‘ 𝑉 ) ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) → ( 0g ‘ 𝑉 ) = ( 0g ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) |
| 142 |
140 125 77 141
|
syl3anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 0g ‘ 𝑉 ) = ( 0g ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) |
| 143 |
142
|
sneqd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → { ( 0g ‘ 𝑉 ) } = { ( 0g ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) } ) |
| 144 |
137 143
|
eqtrd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) = { ( 0g ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) } ) |
| 145 |
|
eqid |
⊢ ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) = ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 146 |
|
eqid |
⊢ ( 0g ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) = ( 0g ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 147 |
145 72 146 1
|
kerf1ghm |
⊢ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) GrpHom 𝑈 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) –1-1→ ( Base ‘ 𝑈 ) ↔ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) = { ( 0g ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) } ) ) |
| 148 |
147
|
biimpar |
⊢ ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) GrpHom 𝑈 ) ∧ ( ◡ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ { 0 } ) = { ( 0g ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) } ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) –1-1→ ( Base ‘ 𝑈 ) ) |
| 149 |
71 144 148
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) –1-1→ ( Base ‘ 𝑈 ) ) |
| 150 |
|
eqidd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) = ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 151 |
55 48
|
ressbas2 |
⊢ ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) = ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) |
| 152 |
77 151
|
syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) = ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) |
| 153 |
|
eqidd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) ) |
| 154 |
150 152 153
|
f1eq123d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1→ ( Base ‘ 𝑈 ) ↔ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) –1-1→ ( Base ‘ 𝑈 ) ) ) |
| 155 |
149 154
|
mpbird |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1→ ( Base ‘ 𝑈 ) ) |
| 156 |
|
f1ssr |
⊢ ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1→ ( Base ‘ 𝑈 ) ∧ ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ⊆ ran 𝐹 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1→ ran 𝐹 ) |
| 157 |
155 40 156
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1→ ran 𝐹 ) |
| 158 |
|
f1f1orn |
⊢ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1→ ran 𝐹 → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1-onto→ ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 159 |
157 158
|
syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1-onto→ ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 160 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
| 161 |
75
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝐹 Fn ( Base ‘ 𝑉 ) ) |
| 162 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) |
| 163 |
113
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) = ( ◡ 𝐹 “ { 0 } ) ) |
| 164 |
162 163
|
eleqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝑢 ∈ ( ◡ 𝐹 “ { 0 } ) ) |
| 165 |
|
fniniseg |
⊢ ( 𝐹 Fn ( Base ‘ 𝑉 ) → ( 𝑢 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑢 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝐹 ‘ 𝑢 ) = 0 ) ) ) |
| 166 |
165
|
simplbda |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑉 ) ∧ 𝑢 ∈ ( ◡ 𝐹 “ { 0 } ) ) → ( 𝐹 ‘ 𝑢 ) = 0 ) |
| 167 |
161 164 166
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( 𝐹 ‘ 𝑢 ) = 0 ) |
| 168 |
167
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( ( 𝐹 ‘ 𝑢 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑣 ) ) = ( 0 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑣 ) ) ) |
| 169 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) |
| 170 |
169
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) ) |
| 171 |
63
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝐹 ∈ ( 𝑉 GrpHom 𝑈 ) ) |
| 172 |
48 52
|
lspss |
⊢ ( ( 𝑉 ∈ LMod ∧ 𝑏 ⊆ ( Base ‘ 𝑉 ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ 𝑏 ) ) |
| 173 |
42 65 19 172
|
syl3anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ 𝑏 ) ) |
| 174 |
48 24 52
|
lbssp |
⊢ ( 𝑏 ∈ ( LBasis ‘ 𝑉 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑏 ) = ( Base ‘ 𝑉 ) ) |
| 175 |
22 174
|
syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑏 ) = ( Base ‘ 𝑉 ) ) |
| 176 |
173 175
|
sseqtrd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) |
| 177 |
176
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) |
| 178 |
177
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) |
| 179 |
178 162
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝑢 ∈ ( Base ‘ 𝑉 ) ) |
| 180 |
77
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) |
| 181 |
180
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) |
| 182 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
| 183 |
181 182
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝑣 ∈ ( Base ‘ 𝑉 ) ) |
| 184 |
|
eqid |
⊢ ( +g ‘ 𝑉 ) = ( +g ‘ 𝑉 ) |
| 185 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
| 186 |
48 184 185
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( 𝑉 GrpHom 𝑈 ) ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ∧ 𝑣 ∈ ( Base ‘ 𝑉 ) ) → ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑣 ) ) ) |
| 187 |
171 179 183 186
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑣 ) ) ) |
| 188 |
170 187
|
eqtr2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( ( 𝐹 ‘ 𝑢 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑣 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 189 |
|
lmhmlvec2 |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝑈 ∈ LVec ) |
| 190 |
189
|
lvecgrpd |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝑈 ∈ Grp ) |
| 191 |
190
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝑈 ∈ Grp ) |
| 192 |
74
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑈 ) ) |
| 193 |
192 183
|
ffvelcdmd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( 𝐹 ‘ 𝑣 ) ∈ ( Base ‘ 𝑈 ) ) |
| 194 |
72 185 1 191 193
|
grplidd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( 0 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑣 ) ) = ( 𝐹 ‘ 𝑣 ) ) |
| 195 |
168 188 194
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑣 ) ) |
| 196 |
160 195
|
eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝑦 = ( 𝐹 ‘ 𝑣 ) ) |
| 197 |
161 183 182
|
fnfvimad |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → ( 𝐹 ‘ 𝑣 ) ∈ ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 198 |
196 197
|
eqeltrd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) → 𝑦 ∈ ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 199 |
|
simp-7l |
⊢ ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑉 ∈ LVec ) |
| 200 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑥 ∈ ( Base ‘ 𝑉 ) ) |
| 201 |
109
|
ad2antrr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑤 ⊆ ( ◡ 𝐹 “ { 0 } ) ) |
| 202 |
105
|
ad4antlr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ◡ 𝐹 “ { 0 } ) ⊆ ( Base ‘ 𝑉 ) ) |
| 203 |
201 202
|
sstrd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → 𝑤 ⊆ ( Base ‘ 𝑉 ) ) |
| 204 |
|
eqid |
⊢ ( LSSum ‘ 𝑉 ) = ( LSSum ‘ 𝑉 ) |
| 205 |
48 52 204
|
lsmsp2 |
⊢ ( ( 𝑉 ∈ LMod ∧ 𝑤 ⊆ ( Base ‘ 𝑉 ) ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) → ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) = ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 206 |
42 203 66 205
|
syl3anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) = ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 207 |
21
|
fveq2d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑤 ∪ ( 𝑏 ∖ 𝑤 ) ) ) = ( ( LSpan ‘ 𝑉 ) ‘ 𝑏 ) ) |
| 208 |
206 207 175
|
3eqtrrd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( Base ‘ 𝑉 ) = ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 209 |
208
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( Base ‘ 𝑉 ) = ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 210 |
200 209
|
eleqtrd |
⊢ ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑥 ∈ ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 211 |
48 184 204
|
lsmelvalx |
⊢ ( ( 𝑉 ∈ LVec ∧ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) → ( 𝑥 ∈ ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ↔ ∃ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ∃ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) ) |
| 212 |
211
|
biimpa |
⊢ ( ( ( 𝑉 ∈ LVec ∧ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) ∧ 𝑥 ∈ ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) → ∃ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ∃ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) |
| 213 |
199 177 180 210 212
|
syl31anc |
⊢ ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ∃ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ∃ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) 𝑥 = ( 𝑢 ( +g ‘ 𝑉 ) 𝑣 ) ) |
| 214 |
198 213
|
r19.29vva |
⊢ ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 215 |
|
fvelrnb |
⊢ ( 𝐹 Fn ( Base ‘ 𝑉 ) → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝑉 ) ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
| 216 |
215
|
biimpa |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑉 ) ∧ 𝑦 ∈ ran 𝐹 ) → ∃ 𝑥 ∈ ( Base ‘ 𝑉 ) ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
| 217 |
75 216
|
sylan |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) → ∃ 𝑥 ∈ ( Base ‘ 𝑉 ) ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
| 218 |
214 217
|
r19.29a |
⊢ ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 219 |
39 218
|
eqelssd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) = ran 𝐹 ) |
| 220 |
37 219
|
eqtr3id |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) = ran 𝐹 ) |
| 221 |
220
|
f1oeq3d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1-onto→ ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ↔ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1-onto→ ran 𝐹 ) ) |
| 222 |
159 221
|
mpbid |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1-onto→ ran 𝐹 ) |
| 223 |
42 50 76
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) |
| 224 |
223 151
|
syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) = ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) |
| 225 |
|
frn |
⊢ ( 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑈 ) → ran 𝐹 ⊆ ( Base ‘ 𝑈 ) ) |
| 226 |
3 72
|
ressbas2 |
⊢ ( ran 𝐹 ⊆ ( Base ‘ 𝑈 ) → ran 𝐹 = ( Base ‘ 𝐼 ) ) |
| 227 |
32 73 225 226
|
4syl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ran 𝐹 = ( Base ‘ 𝐼 ) ) |
| 228 |
150 224 227
|
f1oeq123d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1-onto→ ran 𝐹 ↔ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) –1-1-onto→ ( Base ‘ 𝐼 ) ) ) |
| 229 |
222 228
|
mpbid |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) –1-1-onto→ ( Base ‘ 𝐼 ) ) |
| 230 |
|
eqid |
⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) |
| 231 |
145 230
|
islmim |
⊢ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMIso 𝐼 ) ↔ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMHom 𝐼 ) ∧ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) –1-1-onto→ ( Base ‘ 𝐼 ) ) ) |
| 232 |
61 229 231
|
sylanbrc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMIso 𝐼 ) ) |
| 233 |
48 52
|
lspssid |
⊢ ( ( 𝑉 ∈ LMod ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) → ( 𝑏 ∖ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
| 234 |
42 50 233
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑏 ∖ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
| 235 |
51 55
|
lsslinds |
⊢ ( ( 𝑉 ∈ LMod ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) → ( ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ↔ ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ 𝑉 ) ) ) |
| 236 |
235
|
biimpar |
⊢ ( ( ( 𝑉 ∈ LMod ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∧ ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ 𝑉 ) ) → ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) |
| 237 |
42 67 234 47 236
|
syl31anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) |
| 238 |
|
eqid |
⊢ ( LSpan ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) = ( LSpan ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 239 |
55 52 238 51
|
lsslsp |
⊢ ( ( 𝑉 ∈ LMod ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) → ( ( LSpan ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ‘ ( 𝑏 ∖ 𝑤 ) ) = ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
| 240 |
239
|
eqcomd |
⊢ ( ( 𝑉 ∈ LMod ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) = ( ( LSpan ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
| 241 |
42 54 234 240
|
syl3anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) = ( ( LSpan ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
| 242 |
241 224
|
eqtr3d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( LSpan ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ‘ ( 𝑏 ∖ 𝑤 ) ) = ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) |
| 243 |
|
eqid |
⊢ ( LBasis ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) = ( LBasis ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 244 |
145 243 238
|
islbs4 |
⊢ ( ( 𝑏 ∖ 𝑤 ) ∈ ( LBasis ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ↔ ( ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ∧ ( ( LSpan ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ‘ ( 𝑏 ∖ 𝑤 ) ) = ( Base ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) ) |
| 245 |
237 242 244
|
sylanbrc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( 𝑏 ∖ 𝑤 ) ∈ ( LBasis ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) |
| 246 |
|
eqid |
⊢ ( LBasis ‘ 𝐼 ) = ( LBasis ‘ 𝐼 ) |
| 247 |
243 246
|
lmimlbs |
⊢ ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ∈ ( ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) LMIso 𝐼 ) ∧ ( 𝑏 ∖ 𝑤 ) ∈ ( LBasis ‘ ( 𝑉 ↾s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LBasis ‘ 𝐼 ) ) |
| 248 |
232 245 247
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LBasis ‘ 𝐼 ) ) |
| 249 |
246
|
dimval |
⊢ ( ( 𝐼 ∈ LVec ∧ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ∈ ( LBasis ‘ 𝐼 ) ) → ( dim ‘ 𝐼 ) = ( ♯ ‘ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 250 |
31 248 249
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( dim ‘ 𝐼 ) = ( ♯ ‘ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 251 |
|
f1imaeng |
⊢ ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1→ ran 𝐹 ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∧ ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ 𝑉 ) ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ≈ ( 𝑏 ∖ 𝑤 ) ) |
| 252 |
|
hasheni |
⊢ ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ≈ ( 𝑏 ∖ 𝑤 ) → ( ♯ ‘ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ) = ( ♯ ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
| 253 |
251 252
|
syl |
⊢ ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) –1-1→ ran 𝐹 ∧ ( 𝑏 ∖ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ∧ ( 𝑏 ∖ 𝑤 ) ∈ ( LIndS ‘ 𝑉 ) ) → ( ♯ ‘ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ) = ( ♯ ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
| 254 |
157 234 47 253
|
syl3anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ♯ ‘ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏 ∖ 𝑤 ) ) ) “ ( 𝑏 ∖ 𝑤 ) ) ) = ( ♯ ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
| 255 |
250 254
|
eqtrd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( dim ‘ 𝐼 ) = ( ♯ ‘ ( 𝑏 ∖ 𝑤 ) ) ) |
| 256 |
29 255
|
oveq12d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( ( dim ‘ 𝐾 ) +𝑒 ( dim ‘ 𝐼 ) ) = ( ( ♯ ‘ 𝑤 ) +𝑒 ( ♯ ‘ ( 𝑏 ∖ 𝑤 ) ) ) ) |
| 257 |
17 26 256
|
3eqtr4d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤 ⊆ 𝑏 ) → ( dim ‘ 𝑉 ) = ( ( dim ‘ 𝐾 ) +𝑒 ( dim ‘ 𝐼 ) ) ) |
| 258 |
5
|
lbslinds |
⊢ ( LBasis ‘ 𝐾 ) ⊆ ( LIndS ‘ 𝐾 ) |
| 259 |
258 93
|
sselid |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑤 ∈ ( LIndS ‘ 𝐾 ) ) |
| 260 |
51 2
|
lsslinds |
⊢ ( ( 𝑉 ∈ LMod ∧ ( ◡ 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) ∧ 𝑤 ⊆ ( ◡ 𝐹 “ { 0 } ) ) → ( 𝑤 ∈ ( LIndS ‘ 𝐾 ) ↔ 𝑤 ∈ ( LIndS ‘ 𝑉 ) ) ) |
| 261 |
260
|
biimpa |
⊢ ( ( ( 𝑉 ∈ LMod ∧ ( ◡ 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) ∧ 𝑤 ⊆ ( ◡ 𝐹 “ { 0 } ) ) ∧ 𝑤 ∈ ( LIndS ‘ 𝐾 ) ) → 𝑤 ∈ ( LIndS ‘ 𝑉 ) ) |
| 262 |
98 101 109 259 261
|
syl31anc |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑤 ∈ ( LIndS ‘ 𝑉 ) ) |
| 263 |
24
|
islinds4 |
⊢ ( 𝑉 ∈ LVec → ( 𝑤 ∈ ( LIndS ‘ 𝑉 ) ↔ ∃ 𝑏 ∈ ( LBasis ‘ 𝑉 ) 𝑤 ⊆ 𝑏 ) ) |
| 264 |
263
|
ad2antrr |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( 𝑤 ∈ ( LIndS ‘ 𝑉 ) ↔ ∃ 𝑏 ∈ ( LBasis ‘ 𝑉 ) 𝑤 ⊆ 𝑏 ) ) |
| 265 |
262 264
|
mpbid |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ∃ 𝑏 ∈ ( LBasis ‘ 𝑉 ) 𝑤 ⊆ 𝑏 ) |
| 266 |
257 265
|
r19.29a |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( dim ‘ 𝑉 ) = ( ( dim ‘ 𝐾 ) +𝑒 ( dim ‘ 𝐼 ) ) ) |
| 267 |
9 266
|
exlimddv |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → ( dim ‘ 𝑉 ) = ( ( dim ‘ 𝐾 ) +𝑒 ( dim ‘ 𝐼 ) ) ) |