Step |
Hyp |
Ref |
Expression |
1 |
|
qusdimsum.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
2 |
|
qusdimsum.y |
⊢ 𝑌 = ( 𝑊 /s ( 𝑊 ~QG 𝑈 ) ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
4 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
5 |
4
|
adantr |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → 𝑊 ∈ LMod ) |
6 |
|
simpr |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
7 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) |
8 |
2 3 5 6 7
|
quslmhm |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) ∈ ( 𝑊 LMHom 𝑌 ) ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) |
10 |
|
eqid |
⊢ ( 𝑊 ↾s ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) “ { ( 0g ‘ 𝑌 ) } ) ) = ( 𝑊 ↾s ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) “ { ( 0g ‘ 𝑌 ) } ) ) |
11 |
|
eqid |
⊢ ( 𝑌 ↾s ran ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) ) = ( 𝑌 ↾s ran ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) ) |
12 |
9 10 11
|
dimkerim |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) ∈ ( 𝑊 LMHom 𝑌 ) ) → ( dim ‘ 𝑊 ) = ( ( dim ‘ ( 𝑊 ↾s ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) “ { ( 0g ‘ 𝑌 ) } ) ) ) +𝑒 ( dim ‘ ( 𝑌 ↾s ran ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) ) ) ) ) |
13 |
8 12
|
syldan |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( dim ‘ 𝑊 ) = ( ( dim ‘ ( 𝑊 ↾s ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) “ { ( 0g ‘ 𝑌 ) } ) ) ) +𝑒 ( dim ‘ ( 𝑌 ↾s ran ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) ) ) ) ) |
14 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
15 |
14
|
lsssubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
16 |
4 15
|
sylan |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
17 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
18 |
4 17
|
syl |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ Abel ) |
19 |
18
|
adantr |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → 𝑊 ∈ Abel ) |
20 |
|
ablnsg |
⊢ ( 𝑊 ∈ Abel → ( NrmSGrp ‘ 𝑊 ) = ( SubGrp ‘ 𝑊 ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( NrmSGrp ‘ 𝑊 ) = ( SubGrp ‘ 𝑊 ) ) |
22 |
16 21
|
eleqtrrd |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → 𝑈 ∈ ( NrmSGrp ‘ 𝑊 ) ) |
23 |
3 7 2 9
|
qusker |
⊢ ( 𝑈 ∈ ( NrmSGrp ‘ 𝑊 ) → ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) “ { ( 0g ‘ 𝑌 ) } ) = 𝑈 ) |
24 |
23
|
oveq2d |
⊢ ( 𝑈 ∈ ( NrmSGrp ‘ 𝑊 ) → ( 𝑊 ↾s ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) “ { ( 0g ‘ 𝑌 ) } ) ) = ( 𝑊 ↾s 𝑈 ) ) |
25 |
22 24
|
syl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑊 ↾s ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) “ { ( 0g ‘ 𝑌 ) } ) ) = ( 𝑊 ↾s 𝑈 ) ) |
26 |
25 1
|
eqtr4di |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑊 ↾s ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) “ { ( 0g ‘ 𝑌 ) } ) ) = 𝑋 ) |
27 |
26
|
fveq2d |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( dim ‘ ( 𝑊 ↾s ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) “ { ( 0g ‘ 𝑌 ) } ) ) ) = ( dim ‘ 𝑋 ) ) |
28 |
2
|
a1i |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → 𝑌 = ( 𝑊 /s ( 𝑊 ~QG 𝑈 ) ) ) |
29 |
3
|
a1i |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) |
30 |
|
ovexd |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑊 ~QG 𝑈 ) ∈ V ) |
31 |
|
simpl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → 𝑊 ∈ LVec ) |
32 |
28 29 7 30 31
|
quslem |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) : ( Base ‘ 𝑊 ) –onto→ ( ( Base ‘ 𝑊 ) / ( 𝑊 ~QG 𝑈 ) ) ) |
33 |
|
forn |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) : ( Base ‘ 𝑊 ) –onto→ ( ( Base ‘ 𝑊 ) / ( 𝑊 ~QG 𝑈 ) ) → ran ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) = ( ( Base ‘ 𝑊 ) / ( 𝑊 ~QG 𝑈 ) ) ) |
34 |
32 33
|
syl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ran ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) = ( ( Base ‘ 𝑊 ) / ( 𝑊 ~QG 𝑈 ) ) ) |
35 |
28 29 30 31
|
qusbas |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( ( Base ‘ 𝑊 ) / ( 𝑊 ~QG 𝑈 ) ) = ( Base ‘ 𝑌 ) ) |
36 |
34 35
|
eqtr2d |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( Base ‘ 𝑌 ) = ran ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) ) |
37 |
36
|
oveq2d |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑌 ↾s ( Base ‘ 𝑌 ) ) = ( 𝑌 ↾s ran ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) ) ) |
38 |
2
|
ovexi |
⊢ 𝑌 ∈ V |
39 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
40 |
39
|
ressid |
⊢ ( 𝑌 ∈ V → ( 𝑌 ↾s ( Base ‘ 𝑌 ) ) = 𝑌 ) |
41 |
38 40
|
ax-mp |
⊢ ( 𝑌 ↾s ( Base ‘ 𝑌 ) ) = 𝑌 |
42 |
37 41
|
eqtr3di |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑌 ↾s ran ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) ) = 𝑌 ) |
43 |
42
|
fveq2d |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( dim ‘ ( 𝑌 ↾s ran ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) ) ) = ( dim ‘ 𝑌 ) ) |
44 |
27 43
|
oveq12d |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( ( dim ‘ ( 𝑊 ↾s ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) “ { ( 0g ‘ 𝑌 ) } ) ) ) +𝑒 ( dim ‘ ( 𝑌 ↾s ran ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ [ 𝑥 ] ( 𝑊 ~QG 𝑈 ) ) ) ) ) = ( ( dim ‘ 𝑋 ) +𝑒 ( dim ‘ 𝑌 ) ) ) |
45 |
13 44
|
eqtrd |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( dim ‘ 𝑊 ) = ( ( dim ‘ 𝑋 ) +𝑒 ( dim ‘ 𝑌 ) ) ) |