Step |
Hyp |
Ref |
Expression |
1 |
|
qusker.b |
⊢ 𝑉 = ( Base ‘ 𝑀 ) |
2 |
|
qusker.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) |
3 |
|
qusker.n |
⊢ 𝑁 = ( 𝑀 /s ( 𝑀 ~QG 𝐺 ) ) |
4 |
|
qusker.1 |
⊢ 0 = ( 0g ‘ 𝑁 ) |
5 |
3
|
a1i |
⊢ ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) → 𝑁 = ( 𝑀 /s ( 𝑀 ~QG 𝐺 ) ) ) |
6 |
1
|
a1i |
⊢ ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) → 𝑉 = ( Base ‘ 𝑀 ) ) |
7 |
|
ovex |
⊢ ( 𝑀 ~QG 𝐺 ) ∈ V |
8 |
7
|
a1i |
⊢ ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) → ( 𝑀 ~QG 𝐺 ) ∈ V ) |
9 |
|
nsgsubg |
⊢ ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) → 𝐺 ∈ ( SubGrp ‘ 𝑀 ) ) |
10 |
|
subgrcl |
⊢ ( 𝐺 ∈ ( SubGrp ‘ 𝑀 ) → 𝑀 ∈ Grp ) |
11 |
9 10
|
syl |
⊢ ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) → 𝑀 ∈ Grp ) |
12 |
5 6 2 8 11
|
quslem |
⊢ ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) → 𝐹 : 𝑉 –onto→ ( 𝑉 / ( 𝑀 ~QG 𝐺 ) ) ) |
13 |
|
fofn |
⊢ ( 𝐹 : 𝑉 –onto→ ( 𝑉 / ( 𝑀 ~QG 𝐺 ) ) → 𝐹 Fn 𝑉 ) |
14 |
|
fniniseg2 |
⊢ ( 𝐹 Fn 𝑉 → ( ◡ 𝐹 “ { 0 } ) = { 𝑦 ∈ 𝑉 ∣ ( 𝐹 ‘ 𝑦 ) = 0 } ) |
15 |
12 13 14
|
3syl |
⊢ ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) → ( ◡ 𝐹 “ { 0 } ) = { 𝑦 ∈ 𝑉 ∣ ( 𝐹 ‘ 𝑦 ) = 0 } ) |
16 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
17 |
3 16
|
qus0 |
⊢ ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) → [ ( 0g ‘ 𝑀 ) ] ( 𝑀 ~QG 𝐺 ) = ( 0g ‘ 𝑁 ) ) |
18 |
4 17
|
eqtr4id |
⊢ ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) → 0 = [ ( 0g ‘ 𝑀 ) ] ( 𝑀 ~QG 𝐺 ) ) |
19 |
|
eceq1 |
⊢ ( 𝑥 = 𝑦 → [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) = [ 𝑦 ] ( 𝑀 ~QG 𝐺 ) ) |
20 |
|
ecexg |
⊢ ( ( 𝑀 ~QG 𝐺 ) ∈ V → [ 𝑦 ] ( 𝑀 ~QG 𝐺 ) ∈ V ) |
21 |
7 20
|
ax-mp |
⊢ [ 𝑦 ] ( 𝑀 ~QG 𝐺 ) ∈ V |
22 |
19 2 21
|
fvmpt |
⊢ ( 𝑦 ∈ 𝑉 → ( 𝐹 ‘ 𝑦 ) = [ 𝑦 ] ( 𝑀 ~QG 𝐺 ) ) |
23 |
18 22
|
eqeqan12d |
⊢ ( ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑉 ) → ( 0 = ( 𝐹 ‘ 𝑦 ) ↔ [ ( 0g ‘ 𝑀 ) ] ( 𝑀 ~QG 𝐺 ) = [ 𝑦 ] ( 𝑀 ~QG 𝐺 ) ) ) |
24 |
|
eqcom |
⊢ ( 0 = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑦 ) = 0 ) |
25 |
24
|
a1i |
⊢ ( ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑉 ) → ( 0 = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑦 ) = 0 ) ) |
26 |
|
simpl |
⊢ ( ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑉 ) → 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ) |
27 |
|
simpr |
⊢ ( ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ 𝑉 ) |
28 |
1 16
|
grpidcl |
⊢ ( 𝑀 ∈ Grp → ( 0g ‘ 𝑀 ) ∈ 𝑉 ) |
29 |
26 11 28
|
3syl |
⊢ ( ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑉 ) → ( 0g ‘ 𝑀 ) ∈ 𝑉 ) |
30 |
1
|
subgss |
⊢ ( 𝐺 ∈ ( SubGrp ‘ 𝑀 ) → 𝐺 ⊆ 𝑉 ) |
31 |
9 30
|
syl |
⊢ ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) → 𝐺 ⊆ 𝑉 ) |
32 |
|
eqid |
⊢ ( invg ‘ 𝑀 ) = ( invg ‘ 𝑀 ) |
33 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
34 |
|
eqid |
⊢ ( 𝑀 ~QG 𝐺 ) = ( 𝑀 ~QG 𝐺 ) |
35 |
1 32 33 34
|
eqgval |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝐺 ⊆ 𝑉 ) → ( ( 0g ‘ 𝑀 ) ( 𝑀 ~QG 𝐺 ) 𝑦 ↔ ( ( 0g ‘ 𝑀 ) ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ ( ( ( invg ‘ 𝑀 ) ‘ ( 0g ‘ 𝑀 ) ) ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐺 ) ) ) |
36 |
11 31 35
|
syl2anc |
⊢ ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) → ( ( 0g ‘ 𝑀 ) ( 𝑀 ~QG 𝐺 ) 𝑦 ↔ ( ( 0g ‘ 𝑀 ) ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ ( ( ( invg ‘ 𝑀 ) ‘ ( 0g ‘ 𝑀 ) ) ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐺 ) ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑉 ) → ( ( 0g ‘ 𝑀 ) ( 𝑀 ~QG 𝐺 ) 𝑦 ↔ ( ( 0g ‘ 𝑀 ) ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ ( ( ( invg ‘ 𝑀 ) ‘ ( 0g ‘ 𝑀 ) ) ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐺 ) ) ) |
38 |
|
df-3an |
⊢ ( ( ( 0g ‘ 𝑀 ) ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ ( ( ( invg ‘ 𝑀 ) ‘ ( 0g ‘ 𝑀 ) ) ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐺 ) ↔ ( ( ( 0g ‘ 𝑀 ) ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( ( invg ‘ 𝑀 ) ‘ ( 0g ‘ 𝑀 ) ) ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐺 ) ) |
39 |
38
|
biancomi |
⊢ ( ( ( 0g ‘ 𝑀 ) ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ ( ( ( invg ‘ 𝑀 ) ‘ ( 0g ‘ 𝑀 ) ) ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐺 ) ↔ ( ( ( ( invg ‘ 𝑀 ) ‘ ( 0g ‘ 𝑀 ) ) ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐺 ∧ ( ( 0g ‘ 𝑀 ) ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) |
40 |
37 39
|
bitrdi |
⊢ ( ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑉 ) → ( ( 0g ‘ 𝑀 ) ( 𝑀 ~QG 𝐺 ) 𝑦 ↔ ( ( ( ( invg ‘ 𝑀 ) ‘ ( 0g ‘ 𝑀 ) ) ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐺 ∧ ( ( 0g ‘ 𝑀 ) ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) ) |
41 |
40
|
rbaibd |
⊢ ( ( ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 0g ‘ 𝑀 ) ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 0g ‘ 𝑀 ) ( 𝑀 ~QG 𝐺 ) 𝑦 ↔ ( ( ( invg ‘ 𝑀 ) ‘ ( 0g ‘ 𝑀 ) ) ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐺 ) ) |
42 |
26 27 29 27 41
|
syl22anc |
⊢ ( ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑉 ) → ( ( 0g ‘ 𝑀 ) ( 𝑀 ~QG 𝐺 ) 𝑦 ↔ ( ( ( invg ‘ 𝑀 ) ‘ ( 0g ‘ 𝑀 ) ) ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐺 ) ) |
43 |
1 34
|
eqger |
⊢ ( 𝐺 ∈ ( SubGrp ‘ 𝑀 ) → ( 𝑀 ~QG 𝐺 ) Er 𝑉 ) |
44 |
9 43
|
syl |
⊢ ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) → ( 𝑀 ~QG 𝐺 ) Er 𝑉 ) |
45 |
44
|
adantr |
⊢ ( ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝑀 ~QG 𝐺 ) Er 𝑉 ) |
46 |
45 27
|
erth2 |
⊢ ( ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑉 ) → ( ( 0g ‘ 𝑀 ) ( 𝑀 ~QG 𝐺 ) 𝑦 ↔ [ ( 0g ‘ 𝑀 ) ] ( 𝑀 ~QG 𝐺 ) = [ 𝑦 ] ( 𝑀 ~QG 𝐺 ) ) ) |
47 |
16 32
|
grpinvid |
⊢ ( 𝑀 ∈ Grp → ( ( invg ‘ 𝑀 ) ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑀 ) ) |
48 |
26 11 47
|
3syl |
⊢ ( ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑉 ) → ( ( invg ‘ 𝑀 ) ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑀 ) ) |
49 |
48
|
oveq1d |
⊢ ( ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑉 ) → ( ( ( invg ‘ 𝑀 ) ‘ ( 0g ‘ 𝑀 ) ) ( +g ‘ 𝑀 ) 𝑦 ) = ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑦 ) ) |
50 |
1 33 16
|
grplid |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑦 ∈ 𝑉 ) → ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑦 ) = 𝑦 ) |
51 |
11 50
|
sylan |
⊢ ( ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑉 ) → ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑦 ) = 𝑦 ) |
52 |
49 51
|
eqtrd |
⊢ ( ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑉 ) → ( ( ( invg ‘ 𝑀 ) ‘ ( 0g ‘ 𝑀 ) ) ( +g ‘ 𝑀 ) 𝑦 ) = 𝑦 ) |
53 |
52
|
eleq1d |
⊢ ( ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑉 ) → ( ( ( ( invg ‘ 𝑀 ) ‘ ( 0g ‘ 𝑀 ) ) ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐺 ↔ 𝑦 ∈ 𝐺 ) ) |
54 |
42 46 53
|
3bitr3d |
⊢ ( ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑉 ) → ( [ ( 0g ‘ 𝑀 ) ] ( 𝑀 ~QG 𝐺 ) = [ 𝑦 ] ( 𝑀 ~QG 𝐺 ) ↔ 𝑦 ∈ 𝐺 ) ) |
55 |
23 25 54
|
3bitr3d |
⊢ ( ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑦 ) = 0 ↔ 𝑦 ∈ 𝐺 ) ) |
56 |
55
|
rabbidva |
⊢ ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) → { 𝑦 ∈ 𝑉 ∣ ( 𝐹 ‘ 𝑦 ) = 0 } = { 𝑦 ∈ 𝑉 ∣ 𝑦 ∈ 𝐺 } ) |
57 |
|
dfss7 |
⊢ ( 𝐺 ⊆ 𝑉 ↔ { 𝑦 ∈ 𝑉 ∣ 𝑦 ∈ 𝐺 } = 𝐺 ) |
58 |
31 57
|
sylib |
⊢ ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) → { 𝑦 ∈ 𝑉 ∣ 𝑦 ∈ 𝐺 } = 𝐺 ) |
59 |
15 56 58
|
3eqtrd |
⊢ ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) → ( ◡ 𝐹 “ { 0 } ) = 𝐺 ) |