Step |
Hyp |
Ref |
Expression |
1 |
|
qusdimsum.x |
|- X = ( W |`s U ) |
2 |
|
qusdimsum.y |
|- Y = ( W /s ( W ~QG U ) ) |
3 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
4 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
5 |
4
|
adantr |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> W e. LMod ) |
6 |
|
simpr |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> U e. ( LSubSp ` W ) ) |
7 |
|
eqid |
|- ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) = ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) |
8 |
2 3 5 6 7
|
quslmhm |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) e. ( W LMHom Y ) ) |
9 |
|
eqid |
|- ( 0g ` Y ) = ( 0g ` Y ) |
10 |
|
eqid |
|- ( W |`s ( `' ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) " { ( 0g ` Y ) } ) ) = ( W |`s ( `' ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) " { ( 0g ` Y ) } ) ) |
11 |
|
eqid |
|- ( Y |`s ran ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) ) = ( Y |`s ran ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) ) |
12 |
9 10 11
|
dimkerim |
|- ( ( W e. LVec /\ ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) e. ( W LMHom Y ) ) -> ( dim ` W ) = ( ( dim ` ( W |`s ( `' ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) " { ( 0g ` Y ) } ) ) ) +e ( dim ` ( Y |`s ran ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) ) ) ) ) |
13 |
8 12
|
syldan |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( dim ` W ) = ( ( dim ` ( W |`s ( `' ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) " { ( 0g ` Y ) } ) ) ) +e ( dim ` ( Y |`s ran ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) ) ) ) ) |
14 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
15 |
14
|
lsssubg |
|- ( ( W e. LMod /\ U e. ( LSubSp ` W ) ) -> U e. ( SubGrp ` W ) ) |
16 |
4 15
|
sylan |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> U e. ( SubGrp ` W ) ) |
17 |
|
lmodabl |
|- ( W e. LMod -> W e. Abel ) |
18 |
4 17
|
syl |
|- ( W e. LVec -> W e. Abel ) |
19 |
18
|
adantr |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> W e. Abel ) |
20 |
|
ablnsg |
|- ( W e. Abel -> ( NrmSGrp ` W ) = ( SubGrp ` W ) ) |
21 |
19 20
|
syl |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( NrmSGrp ` W ) = ( SubGrp ` W ) ) |
22 |
16 21
|
eleqtrrd |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> U e. ( NrmSGrp ` W ) ) |
23 |
3 7 2 9
|
qusker |
|- ( U e. ( NrmSGrp ` W ) -> ( `' ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) " { ( 0g ` Y ) } ) = U ) |
24 |
23
|
oveq2d |
|- ( U e. ( NrmSGrp ` W ) -> ( W |`s ( `' ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) " { ( 0g ` Y ) } ) ) = ( W |`s U ) ) |
25 |
22 24
|
syl |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( W |`s ( `' ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) " { ( 0g ` Y ) } ) ) = ( W |`s U ) ) |
26 |
25 1
|
eqtr4di |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( W |`s ( `' ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) " { ( 0g ` Y ) } ) ) = X ) |
27 |
26
|
fveq2d |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( dim ` ( W |`s ( `' ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) " { ( 0g ` Y ) } ) ) ) = ( dim ` X ) ) |
28 |
2
|
a1i |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> Y = ( W /s ( W ~QG U ) ) ) |
29 |
3
|
a1i |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( Base ` W ) = ( Base ` W ) ) |
30 |
|
ovexd |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( W ~QG U ) e. _V ) |
31 |
|
simpl |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> W e. LVec ) |
32 |
28 29 7 30 31
|
quslem |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) : ( Base ` W ) -onto-> ( ( Base ` W ) /. ( W ~QG U ) ) ) |
33 |
|
forn |
|- ( ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) : ( Base ` W ) -onto-> ( ( Base ` W ) /. ( W ~QG U ) ) -> ran ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) = ( ( Base ` W ) /. ( W ~QG U ) ) ) |
34 |
32 33
|
syl |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ran ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) = ( ( Base ` W ) /. ( W ~QG U ) ) ) |
35 |
28 29 30 31
|
qusbas |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( ( Base ` W ) /. ( W ~QG U ) ) = ( Base ` Y ) ) |
36 |
34 35
|
eqtr2d |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( Base ` Y ) = ran ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) ) |
37 |
36
|
oveq2d |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( Y |`s ( Base ` Y ) ) = ( Y |`s ran ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) ) ) |
38 |
2
|
ovexi |
|- Y e. _V |
39 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
40 |
39
|
ressid |
|- ( Y e. _V -> ( Y |`s ( Base ` Y ) ) = Y ) |
41 |
38 40
|
ax-mp |
|- ( Y |`s ( Base ` Y ) ) = Y |
42 |
37 41
|
eqtr3di |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( Y |`s ran ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) ) = Y ) |
43 |
42
|
fveq2d |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( dim ` ( Y |`s ran ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) ) ) = ( dim ` Y ) ) |
44 |
27 43
|
oveq12d |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( ( dim ` ( W |`s ( `' ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) " { ( 0g ` Y ) } ) ) ) +e ( dim ` ( Y |`s ran ( x e. ( Base ` W ) |-> [ x ] ( W ~QG U ) ) ) ) ) = ( ( dim ` X ) +e ( dim ` Y ) ) ) |
45 |
13 44
|
eqtrd |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( dim ` W ) = ( ( dim ` X ) +e ( dim ` Y ) ) ) |