Step |
Hyp |
Ref |
Expression |
1 |
|
dimkerim.0 |
|- .0. = ( 0g ` U ) |
2 |
|
dimkerim.k |
|- K = ( V |`s ( `' F " { .0. } ) ) |
3 |
|
dimkerim.i |
|- I = ( U |`s ran F ) |
4 |
1 2
|
kerlmhm |
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> K e. LVec ) |
5 |
|
eqid |
|- ( LBasis ` K ) = ( LBasis ` K ) |
6 |
5
|
lbsex |
|- ( K e. LVec -> ( LBasis ` K ) =/= (/) ) |
7 |
4 6
|
syl |
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> ( LBasis ` K ) =/= (/) ) |
8 |
|
n0 |
|- ( ( LBasis ` K ) =/= (/) <-> E. w w e. ( LBasis ` K ) ) |
9 |
7 8
|
sylib |
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> E. w w e. ( LBasis ` K ) ) |
10 |
|
simpllr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> w e. ( LBasis ` K ) ) |
11 |
|
vex |
|- b e. _V |
12 |
11
|
difexi |
|- ( b \ w ) e. _V |
13 |
12
|
a1i |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( b \ w ) e. _V ) |
14 |
|
disjdif |
|- ( w i^i ( b \ w ) ) = (/) |
15 |
14
|
a1i |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( w i^i ( b \ w ) ) = (/) ) |
16 |
|
hashunx |
|- ( ( w e. ( LBasis ` K ) /\ ( b \ w ) e. _V /\ ( w i^i ( b \ w ) ) = (/) ) -> ( # ` ( w u. ( b \ w ) ) ) = ( ( # ` w ) +e ( # ` ( b \ w ) ) ) ) |
17 |
10 13 15 16
|
syl3anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( # ` ( w u. ( b \ w ) ) ) = ( ( # ` w ) +e ( # ` ( b \ w ) ) ) ) |
18 |
|
simp-4l |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> V e. LVec ) |
19 |
|
simpr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> w C_ b ) |
20 |
|
undif |
|- ( w C_ b <-> ( w u. ( b \ w ) ) = b ) |
21 |
19 20
|
sylib |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( w u. ( b \ w ) ) = b ) |
22 |
|
simplr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> b e. ( LBasis ` V ) ) |
23 |
21 22
|
eqeltrd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( w u. ( b \ w ) ) e. ( LBasis ` V ) ) |
24 |
|
eqid |
|- ( LBasis ` V ) = ( LBasis ` V ) |
25 |
24
|
dimval |
|- ( ( V e. LVec /\ ( w u. ( b \ w ) ) e. ( LBasis ` V ) ) -> ( dim ` V ) = ( # ` ( w u. ( b \ w ) ) ) ) |
26 |
18 23 25
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( dim ` V ) = ( # ` ( w u. ( b \ w ) ) ) ) |
27 |
4
|
ad3antrrr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> K e. LVec ) |
28 |
5
|
dimval |
|- ( ( K e. LVec /\ w e. ( LBasis ` K ) ) -> ( dim ` K ) = ( # ` w ) ) |
29 |
27 10 28
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( dim ` K ) = ( # ` w ) ) |
30 |
3
|
imlmhm |
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> I e. LVec ) |
31 |
30
|
ad3antrrr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> I e. LVec ) |
32 |
|
simp-4r |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> F e. ( V LMHom U ) ) |
33 |
|
lmhmlmod2 |
|- ( F e. ( V LMHom U ) -> U e. LMod ) |
34 |
32 33
|
syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> U e. LMod ) |
35 |
|
lmhmrnlss |
|- ( F e. ( V LMHom U ) -> ran F e. ( LSubSp ` U ) ) |
36 |
32 35
|
syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ran F e. ( LSubSp ` U ) ) |
37 |
|
df-ima |
|- ( F " ( ( LSpan ` V ) ` ( b \ w ) ) ) = ran ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) |
38 |
|
imassrn |
|- ( F " ( ( LSpan ` V ) ` ( b \ w ) ) ) C_ ran F |
39 |
38
|
a1i |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F " ( ( LSpan ` V ) ` ( b \ w ) ) ) C_ ran F ) |
40 |
37 39
|
eqsstrrid |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ran ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) C_ ran F ) |
41 |
|
lveclmod |
|- ( V e. LVec -> V e. LMod ) |
42 |
41
|
ad4antr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> V e. LMod ) |
43 |
24
|
lbslinds |
|- ( LBasis ` V ) C_ ( LIndS ` V ) |
44 |
43 22
|
sselid |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> b e. ( LIndS ` V ) ) |
45 |
|
difssd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( b \ w ) C_ b ) |
46 |
|
lindsss |
|- ( ( V e. LMod /\ b e. ( LIndS ` V ) /\ ( b \ w ) C_ b ) -> ( b \ w ) e. ( LIndS ` V ) ) |
47 |
42 44 45 46
|
syl3anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( b \ w ) e. ( LIndS ` V ) ) |
48 |
|
eqid |
|- ( Base ` V ) = ( Base ` V ) |
49 |
48
|
linds1 |
|- ( ( b \ w ) e. ( LIndS ` V ) -> ( b \ w ) C_ ( Base ` V ) ) |
50 |
47 49
|
syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( b \ w ) C_ ( Base ` V ) ) |
51 |
|
eqid |
|- ( LSubSp ` V ) = ( LSubSp ` V ) |
52 |
|
eqid |
|- ( LSpan ` V ) = ( LSpan ` V ) |
53 |
48 51 52
|
lspcl |
|- ( ( V e. LMod /\ ( b \ w ) C_ ( Base ` V ) ) -> ( ( LSpan ` V ) ` ( b \ w ) ) e. ( LSubSp ` V ) ) |
54 |
42 50 53
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` ( b \ w ) ) e. ( LSubSp ` V ) ) |
55 |
|
eqid |
|- ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) = ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) |
56 |
51 55
|
reslmhm |
|- ( ( F e. ( V LMHom U ) /\ ( ( LSpan ` V ) ` ( b \ w ) ) e. ( LSubSp ` V ) ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMHom U ) ) |
57 |
32 54 56
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMHom U ) ) |
58 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
59 |
3 58
|
reslmhm2b |
|- ( ( U e. LMod /\ ran F e. ( LSubSp ` U ) /\ ran ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) C_ ran F ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMHom U ) <-> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMHom I ) ) ) |
60 |
59
|
biimpa |
|- ( ( ( U e. LMod /\ ran F e. ( LSubSp ` U ) /\ ran ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) C_ ran F ) /\ ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMHom U ) ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMHom I ) ) |
61 |
34 36 40 57 60
|
syl31anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMHom I ) ) |
62 |
|
lmghm |
|- ( F e. ( V LMHom U ) -> F e. ( V GrpHom U ) ) |
63 |
62
|
ad4antlr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> F e. ( V GrpHom U ) ) |
64 |
48 24
|
lbsss |
|- ( b e. ( LBasis ` V ) -> b C_ ( Base ` V ) ) |
65 |
22 64
|
syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> b C_ ( Base ` V ) ) |
66 |
45 65
|
sstrd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( b \ w ) C_ ( Base ` V ) ) |
67 |
42 66 53
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` ( b \ w ) ) e. ( LSubSp ` V ) ) |
68 |
51
|
lsssubg |
|- ( ( V e. LMod /\ ( ( LSpan ` V ) ` ( b \ w ) ) e. ( LSubSp ` V ) ) -> ( ( LSpan ` V ) ` ( b \ w ) ) e. ( SubGrp ` V ) ) |
69 |
42 67 68
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` ( b \ w ) ) e. ( SubGrp ` V ) ) |
70 |
55
|
resghm |
|- ( ( F e. ( V GrpHom U ) /\ ( ( LSpan ` V ) ` ( b \ w ) ) e. ( SubGrp ` V ) ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) GrpHom U ) ) |
71 |
63 69 70
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) GrpHom U ) ) |
72 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
73 |
48 72
|
lmhmf |
|- ( F e. ( V LMHom U ) -> F : ( Base ` V ) --> ( Base ` U ) ) |
74 |
73
|
ad4antlr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> F : ( Base ` V ) --> ( Base ` U ) ) |
75 |
74
|
ffnd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> F Fn ( Base ` V ) ) |
76 |
48 52
|
lspssv |
|- ( ( V e. LMod /\ ( b \ w ) C_ ( Base ` V ) ) -> ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) ) |
77 |
42 66 76
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) ) |
78 |
|
fnssres |
|- ( ( F Fn ( Base ` V ) /\ ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) Fn ( ( LSpan ` V ) ` ( b \ w ) ) ) |
79 |
75 77 78
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) Fn ( ( LSpan ` V ) ` ( b \ w ) ) ) |
80 |
|
fniniseg |
|- ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) Fn ( ( LSpan ` V ) ` ( b \ w ) ) -> ( x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) <-> ( x e. ( ( LSpan ` V ) ` ( b \ w ) ) /\ ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` x ) = .0. ) ) ) |
81 |
80
|
biimpa |
|- ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) Fn ( ( LSpan ` V ) ` ( b \ w ) ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> ( x e. ( ( LSpan ` V ) ` ( b \ w ) ) /\ ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` x ) = .0. ) ) |
82 |
79 81
|
sylan |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> ( x e. ( ( LSpan ` V ) ` ( b \ w ) ) /\ ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` x ) = .0. ) ) |
83 |
82
|
simpld |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> x e. ( ( LSpan ` V ) ` ( b \ w ) ) ) |
84 |
75
|
adantr |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> F Fn ( Base ` V ) ) |
85 |
77
|
adantr |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) ) |
86 |
85 83
|
sseldd |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> x e. ( Base ` V ) ) |
87 |
83
|
fvresd |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` x ) = ( F ` x ) ) |
88 |
82
|
simprd |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` x ) = .0. ) |
89 |
87 88
|
eqtr3d |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> ( F ` x ) = .0. ) |
90 |
|
fniniseg |
|- ( F Fn ( Base ` V ) -> ( x e. ( `' F " { .0. } ) <-> ( x e. ( Base ` V ) /\ ( F ` x ) = .0. ) ) ) |
91 |
90
|
biimpar |
|- ( ( F Fn ( Base ` V ) /\ ( x e. ( Base ` V ) /\ ( F ` x ) = .0. ) ) -> x e. ( `' F " { .0. } ) ) |
92 |
84 86 89 91
|
syl12anc |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> x e. ( `' F " { .0. } ) ) |
93 |
83 92
|
elind |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> x e. ( ( ( LSpan ` V ) ` ( b \ w ) ) i^i ( `' F " { .0. } ) ) ) |
94 |
|
simpr |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> w e. ( LBasis ` K ) ) |
95 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
96 |
|
eqid |
|- ( LSpan ` K ) = ( LSpan ` K ) |
97 |
95 5 96
|
lbssp |
|- ( w e. ( LBasis ` K ) -> ( ( LSpan ` K ) ` w ) = ( Base ` K ) ) |
98 |
94 97
|
syl |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> ( ( LSpan ` K ) ` w ) = ( Base ` K ) ) |
99 |
41
|
ad2antrr |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> V e. LMod ) |
100 |
|
eqid |
|- ( `' F " { .0. } ) = ( `' F " { .0. } ) |
101 |
100 1 51
|
lmhmkerlss |
|- ( F e. ( V LMHom U ) -> ( `' F " { .0. } ) e. ( LSubSp ` V ) ) |
102 |
101
|
ad2antlr |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> ( `' F " { .0. } ) e. ( LSubSp ` V ) ) |
103 |
95 5
|
lbsss |
|- ( w e. ( LBasis ` K ) -> w C_ ( Base ` K ) ) |
104 |
94 103
|
syl |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> w C_ ( Base ` K ) ) |
105 |
|
cnvimass |
|- ( `' F " { .0. } ) C_ dom F |
106 |
105 73
|
fssdm |
|- ( F e. ( V LMHom U ) -> ( `' F " { .0. } ) C_ ( Base ` V ) ) |
107 |
2 48
|
ressbas2 |
|- ( ( `' F " { .0. } ) C_ ( Base ` V ) -> ( `' F " { .0. } ) = ( Base ` K ) ) |
108 |
106 107
|
syl |
|- ( F e. ( V LMHom U ) -> ( `' F " { .0. } ) = ( Base ` K ) ) |
109 |
108
|
ad2antlr |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> ( `' F " { .0. } ) = ( Base ` K ) ) |
110 |
104 109
|
sseqtrrd |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> w C_ ( `' F " { .0. } ) ) |
111 |
2 52 96 51
|
lsslsp |
|- ( ( V e. LMod /\ ( `' F " { .0. } ) e. ( LSubSp ` V ) /\ w C_ ( `' F " { .0. } ) ) -> ( ( LSpan ` V ) ` w ) = ( ( LSpan ` K ) ` w ) ) |
112 |
99 102 110 111
|
syl3anc |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> ( ( LSpan ` V ) ` w ) = ( ( LSpan ` K ) ` w ) ) |
113 |
98 112 109
|
3eqtr4d |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> ( ( LSpan ` V ) ` w ) = ( `' F " { .0. } ) ) |
114 |
113
|
ad2antrr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` w ) = ( `' F " { .0. } ) ) |
115 |
114
|
ineq2d |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( ( LSpan ` V ) ` ( b \ w ) ) i^i ( ( LSpan ` V ) ` w ) ) = ( ( ( LSpan ` V ) ` ( b \ w ) ) i^i ( `' F " { .0. } ) ) ) |
116 |
|
eqid |
|- ( 0g ` V ) = ( 0g ` V ) |
117 |
24 52 116
|
lbsdiflsp0 |
|- ( ( V e. LVec /\ b e. ( LBasis ` V ) /\ w C_ b ) -> ( ( ( LSpan ` V ) ` ( b \ w ) ) i^i ( ( LSpan ` V ) ` w ) ) = { ( 0g ` V ) } ) |
118 |
117
|
ad5ant145 |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( ( LSpan ` V ) ` ( b \ w ) ) i^i ( ( LSpan ` V ) ` w ) ) = { ( 0g ` V ) } ) |
119 |
115 118
|
eqtr3d |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( ( LSpan ` V ) ` ( b \ w ) ) i^i ( `' F " { .0. } ) ) = { ( 0g ` V ) } ) |
120 |
119
|
adantr |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> ( ( ( LSpan ` V ) ` ( b \ w ) ) i^i ( `' F " { .0. } ) ) = { ( 0g ` V ) } ) |
121 |
93 120
|
eleqtrd |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> x e. { ( 0g ` V ) } ) |
122 |
121
|
ex |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) -> x e. { ( 0g ` V ) } ) ) |
123 |
122
|
ssrdv |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) C_ { ( 0g ` V ) } ) |
124 |
116 48 52
|
0ellsp |
|- ( ( V e. LMod /\ ( b \ w ) C_ ( Base ` V ) ) -> ( 0g ` V ) e. ( ( LSpan ` V ) ` ( b \ w ) ) ) |
125 |
42 66 124
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( 0g ` V ) e. ( ( LSpan ` V ) ` ( b \ w ) ) ) |
126 |
|
fvexd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) e. _V ) |
127 |
125
|
fvresd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) = ( F ` ( 0g ` V ) ) ) |
128 |
116 1
|
ghmid |
|- ( F e. ( V GrpHom U ) -> ( F ` ( 0g ` V ) ) = .0. ) |
129 |
62 128
|
syl |
|- ( F e. ( V LMHom U ) -> ( F ` ( 0g ` V ) ) = .0. ) |
130 |
129
|
ad4antlr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F ` ( 0g ` V ) ) = .0. ) |
131 |
127 130
|
eqtrd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) = .0. ) |
132 |
|
elsng |
|- ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) e. _V -> ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) e. { .0. } <-> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) = .0. ) ) |
133 |
132
|
biimpar |
|- ( ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) e. _V /\ ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) = .0. ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) e. { .0. } ) |
134 |
126 131 133
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) e. { .0. } ) |
135 |
79 125 134
|
elpreimad |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( 0g ` V ) e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) |
136 |
135
|
snssd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> { ( 0g ` V ) } C_ ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) |
137 |
123 136
|
eqssd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) = { ( 0g ` V ) } ) |
138 |
|
lmodgrp |
|- ( V e. LMod -> V e. Grp ) |
139 |
|
grpmnd |
|- ( V e. Grp -> V e. Mnd ) |
140 |
42 138 139
|
3syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> V e. Mnd ) |
141 |
55 48 116
|
ress0g |
|- ( ( V e. Mnd /\ ( 0g ` V ) e. ( ( LSpan ` V ) ` ( b \ w ) ) /\ ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) ) -> ( 0g ` V ) = ( 0g ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) |
142 |
140 125 77 141
|
syl3anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( 0g ` V ) = ( 0g ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) |
143 |
142
|
sneqd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> { ( 0g ` V ) } = { ( 0g ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) } ) |
144 |
137 143
|
eqtrd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) = { ( 0g ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) } ) |
145 |
|
eqid |
|- ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) = ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
146 |
|
eqid |
|- ( 0g ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) = ( 0g ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
147 |
145 72 146 1
|
kerf1ghm |
|- ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) GrpHom U ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) -1-1-> ( Base ` U ) <-> ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) = { ( 0g ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) } ) ) |
148 |
147
|
biimpar |
|- ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) GrpHom U ) /\ ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) = { ( 0g ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) } ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) -1-1-> ( Base ` U ) ) |
149 |
71 144 148
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) -1-1-> ( Base ` U ) ) |
150 |
|
eqidd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) = ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
151 |
55 48
|
ressbas2 |
|- ( ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) -> ( ( LSpan ` V ) ` ( b \ w ) ) = ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) |
152 |
77 151
|
syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` ( b \ w ) ) = ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) |
153 |
|
eqidd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( Base ` U ) = ( Base ` U ) ) |
154 |
150 152 153
|
f1eq123d |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-> ( Base ` U ) <-> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) -1-1-> ( Base ` U ) ) ) |
155 |
149 154
|
mpbird |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-> ( Base ` U ) ) |
156 |
|
f1ssr |
|- ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-> ( Base ` U ) /\ ran ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) C_ ran F ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-> ran F ) |
157 |
155 40 156
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-> ran F ) |
158 |
|
f1f1orn |
|- ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-> ran F -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-onto-> ran ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
159 |
157 158
|
syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-onto-> ran ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
160 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( F ` x ) = y ) |
161 |
75
|
ad6antr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> F Fn ( Base ` V ) ) |
162 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> u e. ( ( LSpan ` V ) ` w ) ) |
163 |
113
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( ( LSpan ` V ) ` w ) = ( `' F " { .0. } ) ) |
164 |
162 163
|
eleqtrd |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> u e. ( `' F " { .0. } ) ) |
165 |
|
fniniseg |
|- ( F Fn ( Base ` V ) -> ( u e. ( `' F " { .0. } ) <-> ( u e. ( Base ` V ) /\ ( F ` u ) = .0. ) ) ) |
166 |
165
|
simplbda |
|- ( ( F Fn ( Base ` V ) /\ u e. ( `' F " { .0. } ) ) -> ( F ` u ) = .0. ) |
167 |
161 164 166
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( F ` u ) = .0. ) |
168 |
167
|
oveq1d |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( ( F ` u ) ( +g ` U ) ( F ` v ) ) = ( .0. ( +g ` U ) ( F ` v ) ) ) |
169 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> x = ( u ( +g ` V ) v ) ) |
170 |
169
|
fveq2d |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( F ` x ) = ( F ` ( u ( +g ` V ) v ) ) ) |
171 |
63
|
ad6antr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> F e. ( V GrpHom U ) ) |
172 |
48 52
|
lspss |
|- ( ( V e. LMod /\ b C_ ( Base ` V ) /\ w C_ b ) -> ( ( LSpan ` V ) ` w ) C_ ( ( LSpan ` V ) ` b ) ) |
173 |
42 65 19 172
|
syl3anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` w ) C_ ( ( LSpan ` V ) ` b ) ) |
174 |
48 24 52
|
lbssp |
|- ( b e. ( LBasis ` V ) -> ( ( LSpan ` V ) ` b ) = ( Base ` V ) ) |
175 |
22 174
|
syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` b ) = ( Base ` V ) ) |
176 |
173 175
|
sseqtrd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` w ) C_ ( Base ` V ) ) |
177 |
176
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) -> ( ( LSpan ` V ) ` w ) C_ ( Base ` V ) ) |
178 |
177
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( ( LSpan ` V ) ` w ) C_ ( Base ` V ) ) |
179 |
178 162
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> u e. ( Base ` V ) ) |
180 |
77
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) -> ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) ) |
181 |
180
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) ) |
182 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) |
183 |
181 182
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> v e. ( Base ` V ) ) |
184 |
|
eqid |
|- ( +g ` V ) = ( +g ` V ) |
185 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
186 |
48 184 185
|
ghmlin |
|- ( ( F e. ( V GrpHom U ) /\ u e. ( Base ` V ) /\ v e. ( Base ` V ) ) -> ( F ` ( u ( +g ` V ) v ) ) = ( ( F ` u ) ( +g ` U ) ( F ` v ) ) ) |
187 |
171 179 183 186
|
syl3anc |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( F ` ( u ( +g ` V ) v ) ) = ( ( F ` u ) ( +g ` U ) ( F ` v ) ) ) |
188 |
170 187
|
eqtr2d |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( ( F ` u ) ( +g ` U ) ( F ` v ) ) = ( F ` x ) ) |
189 |
|
lmhmlvec2 |
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> U e. LVec ) |
190 |
|
lveclmod |
|- ( U e. LVec -> U e. LMod ) |
191 |
|
lmodgrp |
|- ( U e. LMod -> U e. Grp ) |
192 |
189 190 191
|
3syl |
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> U e. Grp ) |
193 |
192
|
ad9antr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> U e. Grp ) |
194 |
74
|
ad6antr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> F : ( Base ` V ) --> ( Base ` U ) ) |
195 |
194 183
|
ffvelrnd |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( F ` v ) e. ( Base ` U ) ) |
196 |
72 185 1
|
grplid |
|- ( ( U e. Grp /\ ( F ` v ) e. ( Base ` U ) ) -> ( .0. ( +g ` U ) ( F ` v ) ) = ( F ` v ) ) |
197 |
193 195 196
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( .0. ( +g ` U ) ( F ` v ) ) = ( F ` v ) ) |
198 |
168 188 197
|
3eqtr3d |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( F ` x ) = ( F ` v ) ) |
199 |
160 198
|
eqtr3d |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> y = ( F ` v ) ) |
200 |
161 183 182
|
fnfvimad |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( F ` v ) e. ( F " ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
201 |
199 200
|
eqeltrd |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> y e. ( F " ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
202 |
|
simp-7l |
|- ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) -> V e. LVec ) |
203 |
|
simplr |
|- ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) -> x e. ( Base ` V ) ) |
204 |
110
|
ad2antrr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> w C_ ( `' F " { .0. } ) ) |
205 |
106
|
ad4antlr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( `' F " { .0. } ) C_ ( Base ` V ) ) |
206 |
204 205
|
sstrd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> w C_ ( Base ` V ) ) |
207 |
|
eqid |
|- ( LSSum ` V ) = ( LSSum ` V ) |
208 |
48 52 207
|
lsmsp2 |
|- ( ( V e. LMod /\ w C_ ( Base ` V ) /\ ( b \ w ) C_ ( Base ` V ) ) -> ( ( ( LSpan ` V ) ` w ) ( LSSum ` V ) ( ( LSpan ` V ) ` ( b \ w ) ) ) = ( ( LSpan ` V ) ` ( w u. ( b \ w ) ) ) ) |
209 |
42 206 66 208
|
syl3anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( ( LSpan ` V ) ` w ) ( LSSum ` V ) ( ( LSpan ` V ) ` ( b \ w ) ) ) = ( ( LSpan ` V ) ` ( w u. ( b \ w ) ) ) ) |
210 |
21
|
fveq2d |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` ( w u. ( b \ w ) ) ) = ( ( LSpan ` V ) ` b ) ) |
211 |
209 210 175
|
3eqtrrd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( Base ` V ) = ( ( ( LSpan ` V ) ` w ) ( LSSum ` V ) ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
212 |
211
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) -> ( Base ` V ) = ( ( ( LSpan ` V ) ` w ) ( LSSum ` V ) ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
213 |
203 212
|
eleqtrd |
|- ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) -> x e. ( ( ( LSpan ` V ) ` w ) ( LSSum ` V ) ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
214 |
48 184 207
|
lsmelvalx |
|- ( ( V e. LVec /\ ( ( LSpan ` V ) ` w ) C_ ( Base ` V ) /\ ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) ) -> ( x e. ( ( ( LSpan ` V ) ` w ) ( LSSum ` V ) ( ( LSpan ` V ) ` ( b \ w ) ) ) <-> E. u e. ( ( LSpan ` V ) ` w ) E. v e. ( ( LSpan ` V ) ` ( b \ w ) ) x = ( u ( +g ` V ) v ) ) ) |
215 |
214
|
biimpa |
|- ( ( ( V e. LVec /\ ( ( LSpan ` V ) ` w ) C_ ( Base ` V ) /\ ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) ) /\ x e. ( ( ( LSpan ` V ) ` w ) ( LSSum ` V ) ( ( LSpan ` V ) ` ( b \ w ) ) ) ) -> E. u e. ( ( LSpan ` V ) ` w ) E. v e. ( ( LSpan ` V ) ` ( b \ w ) ) x = ( u ( +g ` V ) v ) ) |
216 |
202 177 180 213 215
|
syl31anc |
|- ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) -> E. u e. ( ( LSpan ` V ) ` w ) E. v e. ( ( LSpan ` V ) ` ( b \ w ) ) x = ( u ( +g ` V ) v ) ) |
217 |
201 216
|
r19.29vva |
|- ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) -> y e. ( F " ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
218 |
|
fvelrnb |
|- ( F Fn ( Base ` V ) -> ( y e. ran F <-> E. x e. ( Base ` V ) ( F ` x ) = y ) ) |
219 |
218
|
biimpa |
|- ( ( F Fn ( Base ` V ) /\ y e. ran F ) -> E. x e. ( Base ` V ) ( F ` x ) = y ) |
220 |
75 219
|
sylan |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) -> E. x e. ( Base ` V ) ( F ` x ) = y ) |
221 |
217 220
|
r19.29a |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) -> y e. ( F " ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
222 |
39 221
|
eqelssd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F " ( ( LSpan ` V ) ` ( b \ w ) ) ) = ran F ) |
223 |
37 222
|
eqtr3id |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ran ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) = ran F ) |
224 |
223
|
f1oeq3d |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-onto-> ran ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) <-> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-onto-> ran F ) ) |
225 |
159 224
|
mpbid |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-onto-> ran F ) |
226 |
42 50 76
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) ) |
227 |
226 151
|
syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` ( b \ w ) ) = ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) |
228 |
|
frn |
|- ( F : ( Base ` V ) --> ( Base ` U ) -> ran F C_ ( Base ` U ) ) |
229 |
3 72
|
ressbas2 |
|- ( ran F C_ ( Base ` U ) -> ran F = ( Base ` I ) ) |
230 |
73 228 229
|
3syl |
|- ( F e. ( V LMHom U ) -> ran F = ( Base ` I ) ) |
231 |
32 230
|
syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ran F = ( Base ` I ) ) |
232 |
150 227 231
|
f1oeq123d |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-onto-> ran F <-> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) -1-1-onto-> ( Base ` I ) ) ) |
233 |
225 232
|
mpbid |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) -1-1-onto-> ( Base ` I ) ) |
234 |
|
eqid |
|- ( Base ` I ) = ( Base ` I ) |
235 |
145 234
|
islmim |
|- ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMIso I ) <-> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMHom I ) /\ ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) -1-1-onto-> ( Base ` I ) ) ) |
236 |
61 233 235
|
sylanbrc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMIso I ) ) |
237 |
48 52
|
lspssid |
|- ( ( V e. LMod /\ ( b \ w ) C_ ( Base ` V ) ) -> ( b \ w ) C_ ( ( LSpan ` V ) ` ( b \ w ) ) ) |
238 |
42 50 237
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( b \ w ) C_ ( ( LSpan ` V ) ` ( b \ w ) ) ) |
239 |
51 55
|
lsslinds |
|- ( ( V e. LMod /\ ( ( LSpan ` V ) ` ( b \ w ) ) e. ( LSubSp ` V ) /\ ( b \ w ) C_ ( ( LSpan ` V ) ` ( b \ w ) ) ) -> ( ( b \ w ) e. ( LIndS ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) <-> ( b \ w ) e. ( LIndS ` V ) ) ) |
240 |
239
|
biimpar |
|- ( ( ( V e. LMod /\ ( ( LSpan ` V ) ` ( b \ w ) ) e. ( LSubSp ` V ) /\ ( b \ w ) C_ ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ ( b \ w ) e. ( LIndS ` V ) ) -> ( b \ w ) e. ( LIndS ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) |
241 |
42 67 238 47 240
|
syl31anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( b \ w ) e. ( LIndS ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) |
242 |
|
eqid |
|- ( LSpan ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) = ( LSpan ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
243 |
55 52 242 51
|
lsslsp |
|- ( ( V e. LMod /\ ( ( LSpan ` V ) ` ( b \ w ) ) e. ( LSubSp ` V ) /\ ( b \ w ) C_ ( ( LSpan ` V ) ` ( b \ w ) ) ) -> ( ( LSpan ` V ) ` ( b \ w ) ) = ( ( LSpan ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ` ( b \ w ) ) ) |
244 |
42 54 238 243
|
syl3anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` ( b \ w ) ) = ( ( LSpan ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ` ( b \ w ) ) ) |
245 |
244 227
|
eqtr3d |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ` ( b \ w ) ) = ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) |
246 |
|
eqid |
|- ( LBasis ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) = ( LBasis ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
247 |
145 246 242
|
islbs4 |
|- ( ( b \ w ) e. ( LBasis ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) <-> ( ( b \ w ) e. ( LIndS ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) /\ ( ( LSpan ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ` ( b \ w ) ) = ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) ) |
248 |
241 245 247
|
sylanbrc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( b \ w ) e. ( LBasis ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) |
249 |
|
eqid |
|- ( LBasis ` I ) = ( LBasis ` I ) |
250 |
246 249
|
lmimlbs |
|- ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMIso I ) /\ ( b \ w ) e. ( LBasis ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) e. ( LBasis ` I ) ) |
251 |
236 248 250
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) e. ( LBasis ` I ) ) |
252 |
249
|
dimval |
|- ( ( I e. LVec /\ ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) e. ( LBasis ` I ) ) -> ( dim ` I ) = ( # ` ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) ) ) |
253 |
31 251 252
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( dim ` I ) = ( # ` ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) ) ) |
254 |
|
f1imaeng |
|- ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-> ran F /\ ( b \ w ) C_ ( ( LSpan ` V ) ` ( b \ w ) ) /\ ( b \ w ) e. ( LIndS ` V ) ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) ~~ ( b \ w ) ) |
255 |
|
hasheni |
|- ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) ~~ ( b \ w ) -> ( # ` ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) ) = ( # ` ( b \ w ) ) ) |
256 |
254 255
|
syl |
|- ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-> ran F /\ ( b \ w ) C_ ( ( LSpan ` V ) ` ( b \ w ) ) /\ ( b \ w ) e. ( LIndS ` V ) ) -> ( # ` ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) ) = ( # ` ( b \ w ) ) ) |
257 |
157 238 47 256
|
syl3anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( # ` ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) ) = ( # ` ( b \ w ) ) ) |
258 |
253 257
|
eqtrd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( dim ` I ) = ( # ` ( b \ w ) ) ) |
259 |
29 258
|
oveq12d |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( dim ` K ) +e ( dim ` I ) ) = ( ( # ` w ) +e ( # ` ( b \ w ) ) ) ) |
260 |
17 26 259
|
3eqtr4d |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( dim ` V ) = ( ( dim ` K ) +e ( dim ` I ) ) ) |
261 |
5
|
lbslinds |
|- ( LBasis ` K ) C_ ( LIndS ` K ) |
262 |
261 94
|
sselid |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> w e. ( LIndS ` K ) ) |
263 |
51 2
|
lsslinds |
|- ( ( V e. LMod /\ ( `' F " { .0. } ) e. ( LSubSp ` V ) /\ w C_ ( `' F " { .0. } ) ) -> ( w e. ( LIndS ` K ) <-> w e. ( LIndS ` V ) ) ) |
264 |
263
|
biimpa |
|- ( ( ( V e. LMod /\ ( `' F " { .0. } ) e. ( LSubSp ` V ) /\ w C_ ( `' F " { .0. } ) ) /\ w e. ( LIndS ` K ) ) -> w e. ( LIndS ` V ) ) |
265 |
99 102 110 262 264
|
syl31anc |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> w e. ( LIndS ` V ) ) |
266 |
24
|
islinds4 |
|- ( V e. LVec -> ( w e. ( LIndS ` V ) <-> E. b e. ( LBasis ` V ) w C_ b ) ) |
267 |
266
|
ad2antrr |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> ( w e. ( LIndS ` V ) <-> E. b e. ( LBasis ` V ) w C_ b ) ) |
268 |
265 267
|
mpbid |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> E. b e. ( LBasis ` V ) w C_ b ) |
269 |
260 268
|
r19.29a |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> ( dim ` V ) = ( ( dim ` K ) +e ( dim ` I ) ) ) |
270 |
9 269
|
exlimddv |
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> ( dim ` V ) = ( ( dim ` K ) +e ( dim ` I ) ) ) |