| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dimkerim.0 |
|- .0. = ( 0g ` U ) |
| 2 |
|
dimkerim.k |
|- K = ( V |`s ( `' F " { .0. } ) ) |
| 3 |
|
dimkerim.i |
|- I = ( U |`s ran F ) |
| 4 |
1 2
|
kerlmhm |
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> K e. LVec ) |
| 5 |
|
eqid |
|- ( LBasis ` K ) = ( LBasis ` K ) |
| 6 |
5
|
lbsex |
|- ( K e. LVec -> ( LBasis ` K ) =/= (/) ) |
| 7 |
4 6
|
syl |
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> ( LBasis ` K ) =/= (/) ) |
| 8 |
|
n0 |
|- ( ( LBasis ` K ) =/= (/) <-> E. w w e. ( LBasis ` K ) ) |
| 9 |
7 8
|
sylib |
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> E. w w e. ( LBasis ` K ) ) |
| 10 |
|
simpllr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> w e. ( LBasis ` K ) ) |
| 11 |
|
vex |
|- b e. _V |
| 12 |
11
|
difexi |
|- ( b \ w ) e. _V |
| 13 |
12
|
a1i |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( b \ w ) e. _V ) |
| 14 |
|
disjdif |
|- ( w i^i ( b \ w ) ) = (/) |
| 15 |
14
|
a1i |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( w i^i ( b \ w ) ) = (/) ) |
| 16 |
|
hashunx |
|- ( ( w e. ( LBasis ` K ) /\ ( b \ w ) e. _V /\ ( w i^i ( b \ w ) ) = (/) ) -> ( # ` ( w u. ( b \ w ) ) ) = ( ( # ` w ) +e ( # ` ( b \ w ) ) ) ) |
| 17 |
10 13 15 16
|
syl3anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( # ` ( w u. ( b \ w ) ) ) = ( ( # ` w ) +e ( # ` ( b \ w ) ) ) ) |
| 18 |
|
simp-4l |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> V e. LVec ) |
| 19 |
|
simpr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> w C_ b ) |
| 20 |
|
undif |
|- ( w C_ b <-> ( w u. ( b \ w ) ) = b ) |
| 21 |
19 20
|
sylib |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( w u. ( b \ w ) ) = b ) |
| 22 |
|
simplr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> b e. ( LBasis ` V ) ) |
| 23 |
21 22
|
eqeltrd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( w u. ( b \ w ) ) e. ( LBasis ` V ) ) |
| 24 |
|
eqid |
|- ( LBasis ` V ) = ( LBasis ` V ) |
| 25 |
24
|
dimval |
|- ( ( V e. LVec /\ ( w u. ( b \ w ) ) e. ( LBasis ` V ) ) -> ( dim ` V ) = ( # ` ( w u. ( b \ w ) ) ) ) |
| 26 |
18 23 25
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( dim ` V ) = ( # ` ( w u. ( b \ w ) ) ) ) |
| 27 |
4
|
ad3antrrr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> K e. LVec ) |
| 28 |
5
|
dimval |
|- ( ( K e. LVec /\ w e. ( LBasis ` K ) ) -> ( dim ` K ) = ( # ` w ) ) |
| 29 |
27 10 28
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( dim ` K ) = ( # ` w ) ) |
| 30 |
3
|
imlmhm |
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> I e. LVec ) |
| 31 |
30
|
ad3antrrr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> I e. LVec ) |
| 32 |
|
simp-4r |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> F e. ( V LMHom U ) ) |
| 33 |
|
lmhmlmod2 |
|- ( F e. ( V LMHom U ) -> U e. LMod ) |
| 34 |
32 33
|
syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> U e. LMod ) |
| 35 |
|
lmhmrnlss |
|- ( F e. ( V LMHom U ) -> ran F e. ( LSubSp ` U ) ) |
| 36 |
32 35
|
syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ran F e. ( LSubSp ` U ) ) |
| 37 |
|
df-ima |
|- ( F " ( ( LSpan ` V ) ` ( b \ w ) ) ) = ran ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) |
| 38 |
|
imassrn |
|- ( F " ( ( LSpan ` V ) ` ( b \ w ) ) ) C_ ran F |
| 39 |
38
|
a1i |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F " ( ( LSpan ` V ) ` ( b \ w ) ) ) C_ ran F ) |
| 40 |
37 39
|
eqsstrrid |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ran ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) C_ ran F ) |
| 41 |
|
lveclmod |
|- ( V e. LVec -> V e. LMod ) |
| 42 |
41
|
ad4antr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> V e. LMod ) |
| 43 |
24
|
lbslinds |
|- ( LBasis ` V ) C_ ( LIndS ` V ) |
| 44 |
43 22
|
sselid |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> b e. ( LIndS ` V ) ) |
| 45 |
|
difssd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( b \ w ) C_ b ) |
| 46 |
|
lindsss |
|- ( ( V e. LMod /\ b e. ( LIndS ` V ) /\ ( b \ w ) C_ b ) -> ( b \ w ) e. ( LIndS ` V ) ) |
| 47 |
42 44 45 46
|
syl3anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( b \ w ) e. ( LIndS ` V ) ) |
| 48 |
|
eqid |
|- ( Base ` V ) = ( Base ` V ) |
| 49 |
48
|
linds1 |
|- ( ( b \ w ) e. ( LIndS ` V ) -> ( b \ w ) C_ ( Base ` V ) ) |
| 50 |
47 49
|
syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( b \ w ) C_ ( Base ` V ) ) |
| 51 |
|
eqid |
|- ( LSubSp ` V ) = ( LSubSp ` V ) |
| 52 |
|
eqid |
|- ( LSpan ` V ) = ( LSpan ` V ) |
| 53 |
48 51 52
|
lspcl |
|- ( ( V e. LMod /\ ( b \ w ) C_ ( Base ` V ) ) -> ( ( LSpan ` V ) ` ( b \ w ) ) e. ( LSubSp ` V ) ) |
| 54 |
42 50 53
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` ( b \ w ) ) e. ( LSubSp ` V ) ) |
| 55 |
|
eqid |
|- ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) = ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) |
| 56 |
51 55
|
reslmhm |
|- ( ( F e. ( V LMHom U ) /\ ( ( LSpan ` V ) ` ( b \ w ) ) e. ( LSubSp ` V ) ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMHom U ) ) |
| 57 |
32 54 56
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMHom U ) ) |
| 58 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 59 |
3 58
|
reslmhm2b |
|- ( ( U e. LMod /\ ran F e. ( LSubSp ` U ) /\ ran ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) C_ ran F ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMHom U ) <-> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMHom I ) ) ) |
| 60 |
59
|
biimpa |
|- ( ( ( U e. LMod /\ ran F e. ( LSubSp ` U ) /\ ran ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) C_ ran F ) /\ ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMHom U ) ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMHom I ) ) |
| 61 |
34 36 40 57 60
|
syl31anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMHom I ) ) |
| 62 |
|
lmghm |
|- ( F e. ( V LMHom U ) -> F e. ( V GrpHom U ) ) |
| 63 |
62
|
ad4antlr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> F e. ( V GrpHom U ) ) |
| 64 |
48 24
|
lbsss |
|- ( b e. ( LBasis ` V ) -> b C_ ( Base ` V ) ) |
| 65 |
22 64
|
syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> b C_ ( Base ` V ) ) |
| 66 |
45 65
|
sstrd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( b \ w ) C_ ( Base ` V ) ) |
| 67 |
42 66 53
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` ( b \ w ) ) e. ( LSubSp ` V ) ) |
| 68 |
51
|
lsssubg |
|- ( ( V e. LMod /\ ( ( LSpan ` V ) ` ( b \ w ) ) e. ( LSubSp ` V ) ) -> ( ( LSpan ` V ) ` ( b \ w ) ) e. ( SubGrp ` V ) ) |
| 69 |
42 67 68
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` ( b \ w ) ) e. ( SubGrp ` V ) ) |
| 70 |
55
|
resghm |
|- ( ( F e. ( V GrpHom U ) /\ ( ( LSpan ` V ) ` ( b \ w ) ) e. ( SubGrp ` V ) ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) GrpHom U ) ) |
| 71 |
63 69 70
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) GrpHom U ) ) |
| 72 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 73 |
48 72
|
lmhmf |
|- ( F e. ( V LMHom U ) -> F : ( Base ` V ) --> ( Base ` U ) ) |
| 74 |
73
|
ad4antlr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> F : ( Base ` V ) --> ( Base ` U ) ) |
| 75 |
74
|
ffnd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> F Fn ( Base ` V ) ) |
| 76 |
48 52
|
lspssv |
|- ( ( V e. LMod /\ ( b \ w ) C_ ( Base ` V ) ) -> ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) ) |
| 77 |
42 66 76
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) ) |
| 78 |
75 77
|
fnssresd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) Fn ( ( LSpan ` V ) ` ( b \ w ) ) ) |
| 79 |
|
fniniseg |
|- ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) Fn ( ( LSpan ` V ) ` ( b \ w ) ) -> ( x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) <-> ( x e. ( ( LSpan ` V ) ` ( b \ w ) ) /\ ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` x ) = .0. ) ) ) |
| 80 |
79
|
biimpa |
|- ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) Fn ( ( LSpan ` V ) ` ( b \ w ) ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> ( x e. ( ( LSpan ` V ) ` ( b \ w ) ) /\ ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` x ) = .0. ) ) |
| 81 |
78 80
|
sylan |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> ( x e. ( ( LSpan ` V ) ` ( b \ w ) ) /\ ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` x ) = .0. ) ) |
| 82 |
81
|
simpld |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> x e. ( ( LSpan ` V ) ` ( b \ w ) ) ) |
| 83 |
75
|
adantr |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> F Fn ( Base ` V ) ) |
| 84 |
77
|
adantr |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) ) |
| 85 |
84 82
|
sseldd |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> x e. ( Base ` V ) ) |
| 86 |
82
|
fvresd |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` x ) = ( F ` x ) ) |
| 87 |
81
|
simprd |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` x ) = .0. ) |
| 88 |
86 87
|
eqtr3d |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> ( F ` x ) = .0. ) |
| 89 |
|
fniniseg |
|- ( F Fn ( Base ` V ) -> ( x e. ( `' F " { .0. } ) <-> ( x e. ( Base ` V ) /\ ( F ` x ) = .0. ) ) ) |
| 90 |
89
|
biimpar |
|- ( ( F Fn ( Base ` V ) /\ ( x e. ( Base ` V ) /\ ( F ` x ) = .0. ) ) -> x e. ( `' F " { .0. } ) ) |
| 91 |
83 85 88 90
|
syl12anc |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> x e. ( `' F " { .0. } ) ) |
| 92 |
82 91
|
elind |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> x e. ( ( ( LSpan ` V ) ` ( b \ w ) ) i^i ( `' F " { .0. } ) ) ) |
| 93 |
|
simpr |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> w e. ( LBasis ` K ) ) |
| 94 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 95 |
|
eqid |
|- ( LSpan ` K ) = ( LSpan ` K ) |
| 96 |
94 5 95
|
lbssp |
|- ( w e. ( LBasis ` K ) -> ( ( LSpan ` K ) ` w ) = ( Base ` K ) ) |
| 97 |
93 96
|
syl |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> ( ( LSpan ` K ) ` w ) = ( Base ` K ) ) |
| 98 |
41
|
ad2antrr |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> V e. LMod ) |
| 99 |
|
eqid |
|- ( `' F " { .0. } ) = ( `' F " { .0. } ) |
| 100 |
99 1 51
|
lmhmkerlss |
|- ( F e. ( V LMHom U ) -> ( `' F " { .0. } ) e. ( LSubSp ` V ) ) |
| 101 |
100
|
ad2antlr |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> ( `' F " { .0. } ) e. ( LSubSp ` V ) ) |
| 102 |
94 5
|
lbsss |
|- ( w e. ( LBasis ` K ) -> w C_ ( Base ` K ) ) |
| 103 |
93 102
|
syl |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> w C_ ( Base ` K ) ) |
| 104 |
|
cnvimass |
|- ( `' F " { .0. } ) C_ dom F |
| 105 |
104 73
|
fssdm |
|- ( F e. ( V LMHom U ) -> ( `' F " { .0. } ) C_ ( Base ` V ) ) |
| 106 |
2 48
|
ressbas2 |
|- ( ( `' F " { .0. } ) C_ ( Base ` V ) -> ( `' F " { .0. } ) = ( Base ` K ) ) |
| 107 |
105 106
|
syl |
|- ( F e. ( V LMHom U ) -> ( `' F " { .0. } ) = ( Base ` K ) ) |
| 108 |
107
|
ad2antlr |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> ( `' F " { .0. } ) = ( Base ` K ) ) |
| 109 |
103 108
|
sseqtrrd |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> w C_ ( `' F " { .0. } ) ) |
| 110 |
2 52 95 51
|
lsslsp |
|- ( ( V e. LMod /\ ( `' F " { .0. } ) e. ( LSubSp ` V ) /\ w C_ ( `' F " { .0. } ) ) -> ( ( LSpan ` K ) ` w ) = ( ( LSpan ` V ) ` w ) ) |
| 111 |
110
|
eqcomd |
|- ( ( V e. LMod /\ ( `' F " { .0. } ) e. ( LSubSp ` V ) /\ w C_ ( `' F " { .0. } ) ) -> ( ( LSpan ` V ) ` w ) = ( ( LSpan ` K ) ` w ) ) |
| 112 |
98 101 109 111
|
syl3anc |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> ( ( LSpan ` V ) ` w ) = ( ( LSpan ` K ) ` w ) ) |
| 113 |
97 112 108
|
3eqtr4d |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> ( ( LSpan ` V ) ` w ) = ( `' F " { .0. } ) ) |
| 114 |
113
|
ad2antrr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` w ) = ( `' F " { .0. } ) ) |
| 115 |
114
|
ineq2d |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( ( LSpan ` V ) ` ( b \ w ) ) i^i ( ( LSpan ` V ) ` w ) ) = ( ( ( LSpan ` V ) ` ( b \ w ) ) i^i ( `' F " { .0. } ) ) ) |
| 116 |
|
eqid |
|- ( 0g ` V ) = ( 0g ` V ) |
| 117 |
24 52 116
|
lbsdiflsp0 |
|- ( ( V e. LVec /\ b e. ( LBasis ` V ) /\ w C_ b ) -> ( ( ( LSpan ` V ) ` ( b \ w ) ) i^i ( ( LSpan ` V ) ` w ) ) = { ( 0g ` V ) } ) |
| 118 |
117
|
ad5ant145 |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( ( LSpan ` V ) ` ( b \ w ) ) i^i ( ( LSpan ` V ) ` w ) ) = { ( 0g ` V ) } ) |
| 119 |
115 118
|
eqtr3d |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( ( LSpan ` V ) ` ( b \ w ) ) i^i ( `' F " { .0. } ) ) = { ( 0g ` V ) } ) |
| 120 |
119
|
adantr |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> ( ( ( LSpan ` V ) ` ( b \ w ) ) i^i ( `' F " { .0. } ) ) = { ( 0g ` V ) } ) |
| 121 |
92 120
|
eleqtrd |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) -> x e. { ( 0g ` V ) } ) |
| 122 |
121
|
ex |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( x e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) -> x e. { ( 0g ` V ) } ) ) |
| 123 |
122
|
ssrdv |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) C_ { ( 0g ` V ) } ) |
| 124 |
116 48 52
|
0ellsp |
|- ( ( V e. LMod /\ ( b \ w ) C_ ( Base ` V ) ) -> ( 0g ` V ) e. ( ( LSpan ` V ) ` ( b \ w ) ) ) |
| 125 |
42 66 124
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( 0g ` V ) e. ( ( LSpan ` V ) ` ( b \ w ) ) ) |
| 126 |
|
fvexd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) e. _V ) |
| 127 |
125
|
fvresd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) = ( F ` ( 0g ` V ) ) ) |
| 128 |
116 1
|
ghmid |
|- ( F e. ( V GrpHom U ) -> ( F ` ( 0g ` V ) ) = .0. ) |
| 129 |
62 128
|
syl |
|- ( F e. ( V LMHom U ) -> ( F ` ( 0g ` V ) ) = .0. ) |
| 130 |
129
|
ad4antlr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F ` ( 0g ` V ) ) = .0. ) |
| 131 |
127 130
|
eqtrd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) = .0. ) |
| 132 |
|
elsng |
|- ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) e. _V -> ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) e. { .0. } <-> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) = .0. ) ) |
| 133 |
132
|
biimpar |
|- ( ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) e. _V /\ ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) = .0. ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) e. { .0. } ) |
| 134 |
126 131 133
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ` ( 0g ` V ) ) e. { .0. } ) |
| 135 |
78 125 134
|
elpreimad |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( 0g ` V ) e. ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) |
| 136 |
135
|
snssd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> { ( 0g ` V ) } C_ ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) ) |
| 137 |
123 136
|
eqssd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) = { ( 0g ` V ) } ) |
| 138 |
|
lmodgrp |
|- ( V e. LMod -> V e. Grp ) |
| 139 |
|
grpmnd |
|- ( V e. Grp -> V e. Mnd ) |
| 140 |
42 138 139
|
3syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> V e. Mnd ) |
| 141 |
55 48 116
|
ress0g |
|- ( ( V e. Mnd /\ ( 0g ` V ) e. ( ( LSpan ` V ) ` ( b \ w ) ) /\ ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) ) -> ( 0g ` V ) = ( 0g ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) |
| 142 |
140 125 77 141
|
syl3anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( 0g ` V ) = ( 0g ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) |
| 143 |
142
|
sneqd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> { ( 0g ` V ) } = { ( 0g ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) } ) |
| 144 |
137 143
|
eqtrd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) = { ( 0g ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) } ) |
| 145 |
|
eqid |
|- ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) = ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
| 146 |
|
eqid |
|- ( 0g ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) = ( 0g ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
| 147 |
145 72 146 1
|
kerf1ghm |
|- ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) GrpHom U ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) -1-1-> ( Base ` U ) <-> ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) = { ( 0g ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) } ) ) |
| 148 |
147
|
biimpar |
|- ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) GrpHom U ) /\ ( `' ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " { .0. } ) = { ( 0g ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) } ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) -1-1-> ( Base ` U ) ) |
| 149 |
71 144 148
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) -1-1-> ( Base ` U ) ) |
| 150 |
|
eqidd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) = ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
| 151 |
55 48
|
ressbas2 |
|- ( ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) -> ( ( LSpan ` V ) ` ( b \ w ) ) = ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) |
| 152 |
77 151
|
syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` ( b \ w ) ) = ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) |
| 153 |
|
eqidd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( Base ` U ) = ( Base ` U ) ) |
| 154 |
150 152 153
|
f1eq123d |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-> ( Base ` U ) <-> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) -1-1-> ( Base ` U ) ) ) |
| 155 |
149 154
|
mpbird |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-> ( Base ` U ) ) |
| 156 |
|
f1ssr |
|- ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-> ( Base ` U ) /\ ran ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) C_ ran F ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-> ran F ) |
| 157 |
155 40 156
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-> ran F ) |
| 158 |
|
f1f1orn |
|- ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-> ran F -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-onto-> ran ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
| 159 |
157 158
|
syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-onto-> ran ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
| 160 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( F ` x ) = y ) |
| 161 |
75
|
ad6antr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> F Fn ( Base ` V ) ) |
| 162 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> u e. ( ( LSpan ` V ) ` w ) ) |
| 163 |
113
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( ( LSpan ` V ) ` w ) = ( `' F " { .0. } ) ) |
| 164 |
162 163
|
eleqtrd |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> u e. ( `' F " { .0. } ) ) |
| 165 |
|
fniniseg |
|- ( F Fn ( Base ` V ) -> ( u e. ( `' F " { .0. } ) <-> ( u e. ( Base ` V ) /\ ( F ` u ) = .0. ) ) ) |
| 166 |
165
|
simplbda |
|- ( ( F Fn ( Base ` V ) /\ u e. ( `' F " { .0. } ) ) -> ( F ` u ) = .0. ) |
| 167 |
161 164 166
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( F ` u ) = .0. ) |
| 168 |
167
|
oveq1d |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( ( F ` u ) ( +g ` U ) ( F ` v ) ) = ( .0. ( +g ` U ) ( F ` v ) ) ) |
| 169 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> x = ( u ( +g ` V ) v ) ) |
| 170 |
169
|
fveq2d |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( F ` x ) = ( F ` ( u ( +g ` V ) v ) ) ) |
| 171 |
63
|
ad6antr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> F e. ( V GrpHom U ) ) |
| 172 |
48 52
|
lspss |
|- ( ( V e. LMod /\ b C_ ( Base ` V ) /\ w C_ b ) -> ( ( LSpan ` V ) ` w ) C_ ( ( LSpan ` V ) ` b ) ) |
| 173 |
42 65 19 172
|
syl3anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` w ) C_ ( ( LSpan ` V ) ` b ) ) |
| 174 |
48 24 52
|
lbssp |
|- ( b e. ( LBasis ` V ) -> ( ( LSpan ` V ) ` b ) = ( Base ` V ) ) |
| 175 |
22 174
|
syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` b ) = ( Base ` V ) ) |
| 176 |
173 175
|
sseqtrd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` w ) C_ ( Base ` V ) ) |
| 177 |
176
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) -> ( ( LSpan ` V ) ` w ) C_ ( Base ` V ) ) |
| 178 |
177
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( ( LSpan ` V ) ` w ) C_ ( Base ` V ) ) |
| 179 |
178 162
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> u e. ( Base ` V ) ) |
| 180 |
77
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) -> ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) ) |
| 181 |
180
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) ) |
| 182 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) |
| 183 |
181 182
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> v e. ( Base ` V ) ) |
| 184 |
|
eqid |
|- ( +g ` V ) = ( +g ` V ) |
| 185 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
| 186 |
48 184 185
|
ghmlin |
|- ( ( F e. ( V GrpHom U ) /\ u e. ( Base ` V ) /\ v e. ( Base ` V ) ) -> ( F ` ( u ( +g ` V ) v ) ) = ( ( F ` u ) ( +g ` U ) ( F ` v ) ) ) |
| 187 |
171 179 183 186
|
syl3anc |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( F ` ( u ( +g ` V ) v ) ) = ( ( F ` u ) ( +g ` U ) ( F ` v ) ) ) |
| 188 |
170 187
|
eqtr2d |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( ( F ` u ) ( +g ` U ) ( F ` v ) ) = ( F ` x ) ) |
| 189 |
|
lmhmlvec2 |
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> U e. LVec ) |
| 190 |
189
|
lvecgrpd |
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> U e. Grp ) |
| 191 |
190
|
ad9antr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> U e. Grp ) |
| 192 |
74
|
ad6antr |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> F : ( Base ` V ) --> ( Base ` U ) ) |
| 193 |
192 183
|
ffvelcdmd |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( F ` v ) e. ( Base ` U ) ) |
| 194 |
72 185 1 191 193
|
grplidd |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( .0. ( +g ` U ) ( F ` v ) ) = ( F ` v ) ) |
| 195 |
168 188 194
|
3eqtr3d |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( F ` x ) = ( F ` v ) ) |
| 196 |
160 195
|
eqtr3d |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> y = ( F ` v ) ) |
| 197 |
161 183 182
|
fnfvimad |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> ( F ` v ) e. ( F " ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
| 198 |
196 197
|
eqeltrd |
|- ( ( ( ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) /\ u e. ( ( LSpan ` V ) ` w ) ) /\ v e. ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ x = ( u ( +g ` V ) v ) ) -> y e. ( F " ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
| 199 |
|
simp-7l |
|- ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) -> V e. LVec ) |
| 200 |
|
simplr |
|- ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) -> x e. ( Base ` V ) ) |
| 201 |
109
|
ad2antrr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> w C_ ( `' F " { .0. } ) ) |
| 202 |
105
|
ad4antlr |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( `' F " { .0. } ) C_ ( Base ` V ) ) |
| 203 |
201 202
|
sstrd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> w C_ ( Base ` V ) ) |
| 204 |
|
eqid |
|- ( LSSum ` V ) = ( LSSum ` V ) |
| 205 |
48 52 204
|
lsmsp2 |
|- ( ( V e. LMod /\ w C_ ( Base ` V ) /\ ( b \ w ) C_ ( Base ` V ) ) -> ( ( ( LSpan ` V ) ` w ) ( LSSum ` V ) ( ( LSpan ` V ) ` ( b \ w ) ) ) = ( ( LSpan ` V ) ` ( w u. ( b \ w ) ) ) ) |
| 206 |
42 203 66 205
|
syl3anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( ( LSpan ` V ) ` w ) ( LSSum ` V ) ( ( LSpan ` V ) ` ( b \ w ) ) ) = ( ( LSpan ` V ) ` ( w u. ( b \ w ) ) ) ) |
| 207 |
21
|
fveq2d |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` ( w u. ( b \ w ) ) ) = ( ( LSpan ` V ) ` b ) ) |
| 208 |
206 207 175
|
3eqtrrd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( Base ` V ) = ( ( ( LSpan ` V ) ` w ) ( LSSum ` V ) ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
| 209 |
208
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) -> ( Base ` V ) = ( ( ( LSpan ` V ) ` w ) ( LSSum ` V ) ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
| 210 |
200 209
|
eleqtrd |
|- ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) -> x e. ( ( ( LSpan ` V ) ` w ) ( LSSum ` V ) ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
| 211 |
48 184 204
|
lsmelvalx |
|- ( ( V e. LVec /\ ( ( LSpan ` V ) ` w ) C_ ( Base ` V ) /\ ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) ) -> ( x e. ( ( ( LSpan ` V ) ` w ) ( LSSum ` V ) ( ( LSpan ` V ) ` ( b \ w ) ) ) <-> E. u e. ( ( LSpan ` V ) ` w ) E. v e. ( ( LSpan ` V ) ` ( b \ w ) ) x = ( u ( +g ` V ) v ) ) ) |
| 212 |
211
|
biimpa |
|- ( ( ( V e. LVec /\ ( ( LSpan ` V ) ` w ) C_ ( Base ` V ) /\ ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) ) /\ x e. ( ( ( LSpan ` V ) ` w ) ( LSSum ` V ) ( ( LSpan ` V ) ` ( b \ w ) ) ) ) -> E. u e. ( ( LSpan ` V ) ` w ) E. v e. ( ( LSpan ` V ) ` ( b \ w ) ) x = ( u ( +g ` V ) v ) ) |
| 213 |
199 177 180 210 212
|
syl31anc |
|- ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) -> E. u e. ( ( LSpan ` V ) ` w ) E. v e. ( ( LSpan ` V ) ` ( b \ w ) ) x = ( u ( +g ` V ) v ) ) |
| 214 |
198 213
|
r19.29vva |
|- ( ( ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) /\ x e. ( Base ` V ) ) /\ ( F ` x ) = y ) -> y e. ( F " ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
| 215 |
|
fvelrnb |
|- ( F Fn ( Base ` V ) -> ( y e. ran F <-> E. x e. ( Base ` V ) ( F ` x ) = y ) ) |
| 216 |
215
|
biimpa |
|- ( ( F Fn ( Base ` V ) /\ y e. ran F ) -> E. x e. ( Base ` V ) ( F ` x ) = y ) |
| 217 |
75 216
|
sylan |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) -> E. x e. ( Base ` V ) ( F ` x ) = y ) |
| 218 |
214 217
|
r19.29a |
|- ( ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) /\ y e. ran F ) -> y e. ( F " ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
| 219 |
39 218
|
eqelssd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F " ( ( LSpan ` V ) ` ( b \ w ) ) ) = ran F ) |
| 220 |
37 219
|
eqtr3id |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ran ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) = ran F ) |
| 221 |
220
|
f1oeq3d |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-onto-> ran ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) <-> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-onto-> ran F ) ) |
| 222 |
159 221
|
mpbid |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-onto-> ran F ) |
| 223 |
42 50 76
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` ( b \ w ) ) C_ ( Base ` V ) ) |
| 224 |
223 151
|
syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` ( b \ w ) ) = ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) |
| 225 |
|
frn |
|- ( F : ( Base ` V ) --> ( Base ` U ) -> ran F C_ ( Base ` U ) ) |
| 226 |
3 72
|
ressbas2 |
|- ( ran F C_ ( Base ` U ) -> ran F = ( Base ` I ) ) |
| 227 |
32 73 225 226
|
4syl |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ran F = ( Base ` I ) ) |
| 228 |
150 224 227
|
f1oeq123d |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-onto-> ran F <-> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) -1-1-onto-> ( Base ` I ) ) ) |
| 229 |
222 228
|
mpbid |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) -1-1-onto-> ( Base ` I ) ) |
| 230 |
|
eqid |
|- ( Base ` I ) = ( Base ` I ) |
| 231 |
145 230
|
islmim |
|- ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMIso I ) <-> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMHom I ) /\ ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) -1-1-onto-> ( Base ` I ) ) ) |
| 232 |
61 229 231
|
sylanbrc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMIso I ) ) |
| 233 |
48 52
|
lspssid |
|- ( ( V e. LMod /\ ( b \ w ) C_ ( Base ` V ) ) -> ( b \ w ) C_ ( ( LSpan ` V ) ` ( b \ w ) ) ) |
| 234 |
42 50 233
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( b \ w ) C_ ( ( LSpan ` V ) ` ( b \ w ) ) ) |
| 235 |
51 55
|
lsslinds |
|- ( ( V e. LMod /\ ( ( LSpan ` V ) ` ( b \ w ) ) e. ( LSubSp ` V ) /\ ( b \ w ) C_ ( ( LSpan ` V ) ` ( b \ w ) ) ) -> ( ( b \ w ) e. ( LIndS ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) <-> ( b \ w ) e. ( LIndS ` V ) ) ) |
| 236 |
235
|
biimpar |
|- ( ( ( V e. LMod /\ ( ( LSpan ` V ) ` ( b \ w ) ) e. ( LSubSp ` V ) /\ ( b \ w ) C_ ( ( LSpan ` V ) ` ( b \ w ) ) ) /\ ( b \ w ) e. ( LIndS ` V ) ) -> ( b \ w ) e. ( LIndS ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) |
| 237 |
42 67 234 47 236
|
syl31anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( b \ w ) e. ( LIndS ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) |
| 238 |
|
eqid |
|- ( LSpan ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) = ( LSpan ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
| 239 |
55 52 238 51
|
lsslsp |
|- ( ( V e. LMod /\ ( ( LSpan ` V ) ` ( b \ w ) ) e. ( LSubSp ` V ) /\ ( b \ w ) C_ ( ( LSpan ` V ) ` ( b \ w ) ) ) -> ( ( LSpan ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ` ( b \ w ) ) = ( ( LSpan ` V ) ` ( b \ w ) ) ) |
| 240 |
239
|
eqcomd |
|- ( ( V e. LMod /\ ( ( LSpan ` V ) ` ( b \ w ) ) e. ( LSubSp ` V ) /\ ( b \ w ) C_ ( ( LSpan ` V ) ` ( b \ w ) ) ) -> ( ( LSpan ` V ) ` ( b \ w ) ) = ( ( LSpan ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ` ( b \ w ) ) ) |
| 241 |
42 54 234 240
|
syl3anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` V ) ` ( b \ w ) ) = ( ( LSpan ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ` ( b \ w ) ) ) |
| 242 |
241 224
|
eqtr3d |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( LSpan ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ` ( b \ w ) ) = ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) |
| 243 |
|
eqid |
|- ( LBasis ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) = ( LBasis ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) |
| 244 |
145 243 238
|
islbs4 |
|- ( ( b \ w ) e. ( LBasis ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) <-> ( ( b \ w ) e. ( LIndS ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) /\ ( ( LSpan ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ` ( b \ w ) ) = ( Base ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) ) |
| 245 |
237 242 244
|
sylanbrc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( b \ w ) e. ( LBasis ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) |
| 246 |
|
eqid |
|- ( LBasis ` I ) = ( LBasis ` I ) |
| 247 |
243 246
|
lmimlbs |
|- ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) e. ( ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) LMIso I ) /\ ( b \ w ) e. ( LBasis ` ( V |`s ( ( LSpan ` V ) ` ( b \ w ) ) ) ) ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) e. ( LBasis ` I ) ) |
| 248 |
232 245 247
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) e. ( LBasis ` I ) ) |
| 249 |
246
|
dimval |
|- ( ( I e. LVec /\ ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) e. ( LBasis ` I ) ) -> ( dim ` I ) = ( # ` ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) ) ) |
| 250 |
31 248 249
|
syl2anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( dim ` I ) = ( # ` ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) ) ) |
| 251 |
|
f1imaeng |
|- ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-> ran F /\ ( b \ w ) C_ ( ( LSpan ` V ) ` ( b \ w ) ) /\ ( b \ w ) e. ( LIndS ` V ) ) -> ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) ~~ ( b \ w ) ) |
| 252 |
|
hasheni |
|- ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) ~~ ( b \ w ) -> ( # ` ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) ) = ( # ` ( b \ w ) ) ) |
| 253 |
251 252
|
syl |
|- ( ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) : ( ( LSpan ` V ) ` ( b \ w ) ) -1-1-> ran F /\ ( b \ w ) C_ ( ( LSpan ` V ) ` ( b \ w ) ) /\ ( b \ w ) e. ( LIndS ` V ) ) -> ( # ` ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) ) = ( # ` ( b \ w ) ) ) |
| 254 |
157 234 47 253
|
syl3anc |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( # ` ( ( F |` ( ( LSpan ` V ) ` ( b \ w ) ) ) " ( b \ w ) ) ) = ( # ` ( b \ w ) ) ) |
| 255 |
250 254
|
eqtrd |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( dim ` I ) = ( # ` ( b \ w ) ) ) |
| 256 |
29 255
|
oveq12d |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( ( dim ` K ) +e ( dim ` I ) ) = ( ( # ` w ) +e ( # ` ( b \ w ) ) ) ) |
| 257 |
17 26 256
|
3eqtr4d |
|- ( ( ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) /\ b e. ( LBasis ` V ) ) /\ w C_ b ) -> ( dim ` V ) = ( ( dim ` K ) +e ( dim ` I ) ) ) |
| 258 |
5
|
lbslinds |
|- ( LBasis ` K ) C_ ( LIndS ` K ) |
| 259 |
258 93
|
sselid |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> w e. ( LIndS ` K ) ) |
| 260 |
51 2
|
lsslinds |
|- ( ( V e. LMod /\ ( `' F " { .0. } ) e. ( LSubSp ` V ) /\ w C_ ( `' F " { .0. } ) ) -> ( w e. ( LIndS ` K ) <-> w e. ( LIndS ` V ) ) ) |
| 261 |
260
|
biimpa |
|- ( ( ( V e. LMod /\ ( `' F " { .0. } ) e. ( LSubSp ` V ) /\ w C_ ( `' F " { .0. } ) ) /\ w e. ( LIndS ` K ) ) -> w e. ( LIndS ` V ) ) |
| 262 |
98 101 109 259 261
|
syl31anc |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> w e. ( LIndS ` V ) ) |
| 263 |
24
|
islinds4 |
|- ( V e. LVec -> ( w e. ( LIndS ` V ) <-> E. b e. ( LBasis ` V ) w C_ b ) ) |
| 264 |
263
|
ad2antrr |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> ( w e. ( LIndS ` V ) <-> E. b e. ( LBasis ` V ) w C_ b ) ) |
| 265 |
262 264
|
mpbid |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> E. b e. ( LBasis ` V ) w C_ b ) |
| 266 |
257 265
|
r19.29a |
|- ( ( ( V e. LVec /\ F e. ( V LMHom U ) ) /\ w e. ( LBasis ` K ) ) -> ( dim ` V ) = ( ( dim ` K ) +e ( dim ` I ) ) ) |
| 267 |
9 266
|
exlimddv |
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> ( dim ` V ) = ( ( dim ` K ) +e ( dim ` I ) ) ) |