Step |
Hyp |
Ref |
Expression |
1 |
|
dimlssid.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
2 |
|
dimlssid.e |
⊢ ( 𝜑 → 𝐸 ∈ LVec ) |
3 |
|
dimlssid.1 |
⊢ ( 𝜑 → ( dim ‘ 𝐸 ) ∈ ℕ0 ) |
4 |
|
dimlssid.l |
⊢ ( 𝜑 → 𝐿 ∈ ( LSubSp ‘ 𝐸 ) ) |
5 |
|
dimlssid.2 |
⊢ ( 𝜑 → ( dim ‘ ( 𝐸 ↾s 𝐿 ) ) = ( dim ‘ 𝐸 ) ) |
6 |
|
eqid |
⊢ ( 𝐸 ↾s 𝐿 ) = ( 𝐸 ↾s 𝐿 ) |
7 |
|
eqid |
⊢ ( LSubSp ‘ 𝐸 ) = ( LSubSp ‘ 𝐸 ) |
8 |
6 7
|
lsslvec |
⊢ ( ( 𝐸 ∈ LVec ∧ 𝐿 ∈ ( LSubSp ‘ 𝐸 ) ) → ( 𝐸 ↾s 𝐿 ) ∈ LVec ) |
9 |
2 4 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐿 ) ∈ LVec ) |
10 |
|
eqid |
⊢ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) = ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) |
11 |
10
|
lbsex |
⊢ ( ( 𝐸 ↾s 𝐿 ) ∈ LVec → ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ≠ ∅ ) |
12 |
9 11
|
syl |
⊢ ( 𝜑 → ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ≠ ∅ ) |
13 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) |
14 |
|
eqid |
⊢ ( LBasis ‘ 𝐸 ) = ( LBasis ‘ 𝐸 ) |
15 |
14
|
dimval |
⊢ ( ( 𝐸 ∈ LVec ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) → ( dim ‘ 𝐸 ) = ( ♯ ‘ 𝑠 ) ) |
16 |
2 15
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) → ( dim ‘ 𝐸 ) = ( ♯ ‘ 𝑠 ) ) |
17 |
16
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → ( dim ‘ 𝐸 ) = ( ♯ ‘ 𝑠 ) ) |
18 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → ( dim ‘ 𝐸 ) ∈ ℕ0 ) |
19 |
17 18
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) |
20 |
|
hashclb |
⊢ ( 𝑠 ∈ ( LBasis ‘ 𝐸 ) → ( 𝑠 ∈ Fin ↔ ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) ) |
21 |
20
|
biimpar |
⊢ ( ( 𝑠 ∈ ( LBasis ‘ 𝐸 ) ∧ ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) → 𝑠 ∈ Fin ) |
22 |
13 19 21
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → 𝑠 ∈ Fin ) |
23 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → 𝑡 ⊆ 𝑠 ) |
24 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → ( dim ‘ ( 𝐸 ↾s 𝐿 ) ) = ( dim ‘ 𝐸 ) ) |
25 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → ( 𝐸 ↾s 𝐿 ) ∈ LVec ) |
26 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) |
27 |
10
|
dimval |
⊢ ( ( ( 𝐸 ↾s 𝐿 ) ∈ LVec ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) → ( dim ‘ ( 𝐸 ↾s 𝐿 ) ) = ( ♯ ‘ 𝑡 ) ) |
28 |
25 26 27
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → ( dim ‘ ( 𝐸 ↾s 𝐿 ) ) = ( ♯ ‘ 𝑡 ) ) |
29 |
24 28 17
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → ( ♯ ‘ 𝑡 ) = ( ♯ ‘ 𝑠 ) ) |
30 |
22 23 29
|
phphashrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → 𝑡 = 𝑠 ) |
31 |
30
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → ( ( LSpan ‘ 𝐸 ) ‘ 𝑡 ) = ( ( LSpan ‘ 𝐸 ) ‘ 𝑠 ) ) |
32 |
1 7
|
lssss |
⊢ ( 𝐿 ∈ ( LSubSp ‘ 𝐸 ) → 𝐿 ⊆ 𝐵 ) |
33 |
6 1
|
ressbas2 |
⊢ ( 𝐿 ⊆ 𝐵 → 𝐿 = ( Base ‘ ( 𝐸 ↾s 𝐿 ) ) ) |
34 |
4 32 33
|
3syl |
⊢ ( 𝜑 → 𝐿 = ( Base ‘ ( 𝐸 ↾s 𝐿 ) ) ) |
35 |
34
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → 𝐿 = ( Base ‘ ( 𝐸 ↾s 𝐿 ) ) ) |
36 |
|
eqid |
⊢ ( Base ‘ ( 𝐸 ↾s 𝐿 ) ) = ( Base ‘ ( 𝐸 ↾s 𝐿 ) ) |
37 |
|
eqid |
⊢ ( LSpan ‘ ( 𝐸 ↾s 𝐿 ) ) = ( LSpan ‘ ( 𝐸 ↾s 𝐿 ) ) |
38 |
36 10 37
|
lbssp |
⊢ ( 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) → ( ( LSpan ‘ ( 𝐸 ↾s 𝐿 ) ) ‘ 𝑡 ) = ( Base ‘ ( 𝐸 ↾s 𝐿 ) ) ) |
39 |
26 38
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → ( ( LSpan ‘ ( 𝐸 ↾s 𝐿 ) ) ‘ 𝑡 ) = ( Base ‘ ( 𝐸 ↾s 𝐿 ) ) ) |
40 |
2
|
lveclmodd |
⊢ ( 𝜑 → 𝐸 ∈ LMod ) |
41 |
40
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → 𝐸 ∈ LMod ) |
42 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → 𝐿 ∈ ( LSubSp ‘ 𝐸 ) ) |
43 |
36 10
|
lbsss |
⊢ ( 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) → 𝑡 ⊆ ( Base ‘ ( 𝐸 ↾s 𝐿 ) ) ) |
44 |
26 43
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → 𝑡 ⊆ ( Base ‘ ( 𝐸 ↾s 𝐿 ) ) ) |
45 |
44 35
|
sseqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → 𝑡 ⊆ 𝐿 ) |
46 |
|
eqid |
⊢ ( LSpan ‘ 𝐸 ) = ( LSpan ‘ 𝐸 ) |
47 |
6 46 37 7
|
lsslsp |
⊢ ( ( 𝐸 ∈ LMod ∧ 𝐿 ∈ ( LSubSp ‘ 𝐸 ) ∧ 𝑡 ⊆ 𝐿 ) → ( ( LSpan ‘ ( 𝐸 ↾s 𝐿 ) ) ‘ 𝑡 ) = ( ( LSpan ‘ 𝐸 ) ‘ 𝑡 ) ) |
48 |
41 42 45 47
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → ( ( LSpan ‘ ( 𝐸 ↾s 𝐿 ) ) ‘ 𝑡 ) = ( ( LSpan ‘ 𝐸 ) ‘ 𝑡 ) ) |
49 |
35 39 48
|
3eqtr2rd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → ( ( LSpan ‘ 𝐸 ) ‘ 𝑡 ) = 𝐿 ) |
50 |
1 14 46
|
lbssp |
⊢ ( 𝑠 ∈ ( LBasis ‘ 𝐸 ) → ( ( LSpan ‘ 𝐸 ) ‘ 𝑠 ) = 𝐵 ) |
51 |
13 50
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → ( ( LSpan ‘ 𝐸 ) ‘ 𝑠 ) = 𝐵 ) |
52 |
31 49 51
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑠 ∈ ( LBasis ‘ 𝐸 ) ) ∧ 𝑡 ⊆ 𝑠 ) → 𝐿 = 𝐵 ) |
53 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) → 𝐸 ∈ LVec ) |
54 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) → 𝑡 ⊆ ( Base ‘ ( 𝐸 ↾s 𝐿 ) ) ) |
55 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) → 𝐿 = ( Base ‘ ( 𝐸 ↾s 𝐿 ) ) ) |
56 |
54 55
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) → 𝑡 ⊆ 𝐿 ) |
57 |
4 32
|
syl |
⊢ ( 𝜑 → 𝐿 ⊆ 𝐵 ) |
58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) → 𝐿 ⊆ 𝐵 ) |
59 |
56 58
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) → 𝑡 ⊆ 𝐵 ) |
60 |
9
|
lveclmodd |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐿 ) ∈ LMod ) |
61 |
60
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑢 ∈ 𝑡 ) → ( 𝐸 ↾s 𝐿 ) ∈ LMod ) |
62 |
|
eqid |
⊢ ( Scalar ‘ 𝐸 ) = ( Scalar ‘ 𝐸 ) |
63 |
62
|
lvecdrng |
⊢ ( 𝐸 ∈ LVec → ( Scalar ‘ 𝐸 ) ∈ DivRing ) |
64 |
|
drngnzr |
⊢ ( ( Scalar ‘ 𝐸 ) ∈ DivRing → ( Scalar ‘ 𝐸 ) ∈ NzRing ) |
65 |
2 63 64
|
3syl |
⊢ ( 𝜑 → ( Scalar ‘ 𝐸 ) ∈ NzRing ) |
66 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝐸 ) ) = ( 1r ‘ ( Scalar ‘ 𝐸 ) ) |
67 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐸 ) ) = ( 0g ‘ ( Scalar ‘ 𝐸 ) ) |
68 |
66 67
|
nzrnz |
⊢ ( ( Scalar ‘ 𝐸 ) ∈ NzRing → ( 1r ‘ ( Scalar ‘ 𝐸 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝐸 ) ) ) |
69 |
65 68
|
syl |
⊢ ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝐸 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝐸 ) ) ) |
70 |
6 62
|
resssca |
⊢ ( 𝐿 ∈ ( LSubSp ‘ 𝐸 ) → ( Scalar ‘ 𝐸 ) = ( Scalar ‘ ( 𝐸 ↾s 𝐿 ) ) ) |
71 |
4 70
|
syl |
⊢ ( 𝜑 → ( Scalar ‘ 𝐸 ) = ( Scalar ‘ ( 𝐸 ↾s 𝐿 ) ) ) |
72 |
71
|
fveq2d |
⊢ ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝐸 ) ) = ( 1r ‘ ( Scalar ‘ ( 𝐸 ↾s 𝐿 ) ) ) ) |
73 |
71
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐸 ) ) = ( 0g ‘ ( Scalar ‘ ( 𝐸 ↾s 𝐿 ) ) ) ) |
74 |
69 72 73
|
3netr3d |
⊢ ( 𝜑 → ( 1r ‘ ( Scalar ‘ ( 𝐸 ↾s 𝐿 ) ) ) ≠ ( 0g ‘ ( Scalar ‘ ( 𝐸 ↾s 𝐿 ) ) ) ) |
75 |
74
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑢 ∈ 𝑡 ) → ( 1r ‘ ( Scalar ‘ ( 𝐸 ↾s 𝐿 ) ) ) ≠ ( 0g ‘ ( Scalar ‘ ( 𝐸 ↾s 𝐿 ) ) ) ) |
76 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑢 ∈ 𝑡 ) → 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) |
77 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑢 ∈ 𝑡 ) → 𝑢 ∈ 𝑡 ) |
78 |
|
eqid |
⊢ ( Scalar ‘ ( 𝐸 ↾s 𝐿 ) ) = ( Scalar ‘ ( 𝐸 ↾s 𝐿 ) ) |
79 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ ( 𝐸 ↾s 𝐿 ) ) ) = ( 1r ‘ ( Scalar ‘ ( 𝐸 ↾s 𝐿 ) ) ) |
80 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ ( 𝐸 ↾s 𝐿 ) ) ) = ( 0g ‘ ( Scalar ‘ ( 𝐸 ↾s 𝐿 ) ) ) |
81 |
10 37 78 79 80
|
lbsind2 |
⊢ ( ( ( ( 𝐸 ↾s 𝐿 ) ∈ LMod ∧ ( 1r ‘ ( Scalar ‘ ( 𝐸 ↾s 𝐿 ) ) ) ≠ ( 0g ‘ ( Scalar ‘ ( 𝐸 ↾s 𝐿 ) ) ) ) ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ∧ 𝑢 ∈ 𝑡 ) → ¬ 𝑢 ∈ ( ( LSpan ‘ ( 𝐸 ↾s 𝐿 ) ) ‘ ( 𝑡 ∖ { 𝑢 } ) ) ) |
82 |
61 75 76 77 81
|
syl211anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑢 ∈ 𝑡 ) → ¬ 𝑢 ∈ ( ( LSpan ‘ ( 𝐸 ↾s 𝐿 ) ) ‘ ( 𝑡 ∖ { 𝑢 } ) ) ) |
83 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑢 ∈ 𝑡 ) → 𝐸 ∈ LMod ) |
84 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑢 ∈ 𝑡 ) → 𝐿 ∈ ( LSubSp ‘ 𝐸 ) ) |
85 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑢 ∈ 𝑡 ) → 𝑡 ⊆ 𝐿 ) |
86 |
85
|
ssdifssd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑢 ∈ 𝑡 ) → ( 𝑡 ∖ { 𝑢 } ) ⊆ 𝐿 ) |
87 |
6 46 37 7
|
lsslsp |
⊢ ( ( 𝐸 ∈ LMod ∧ 𝐿 ∈ ( LSubSp ‘ 𝐸 ) ∧ ( 𝑡 ∖ { 𝑢 } ) ⊆ 𝐿 ) → ( ( LSpan ‘ ( 𝐸 ↾s 𝐿 ) ) ‘ ( 𝑡 ∖ { 𝑢 } ) ) = ( ( LSpan ‘ 𝐸 ) ‘ ( 𝑡 ∖ { 𝑢 } ) ) ) |
88 |
83 84 86 87
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑢 ∈ 𝑡 ) → ( ( LSpan ‘ ( 𝐸 ↾s 𝐿 ) ) ‘ ( 𝑡 ∖ { 𝑢 } ) ) = ( ( LSpan ‘ 𝐸 ) ‘ ( 𝑡 ∖ { 𝑢 } ) ) ) |
89 |
82 88
|
neleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) ∧ 𝑢 ∈ 𝑡 ) → ¬ 𝑢 ∈ ( ( LSpan ‘ 𝐸 ) ‘ ( 𝑡 ∖ { 𝑢 } ) ) ) |
90 |
89
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) → ∀ 𝑢 ∈ 𝑡 ¬ 𝑢 ∈ ( ( LSpan ‘ 𝐸 ) ‘ ( 𝑡 ∖ { 𝑢 } ) ) ) |
91 |
14 1 46
|
lbsext |
⊢ ( ( 𝐸 ∈ LVec ∧ 𝑡 ⊆ 𝐵 ∧ ∀ 𝑢 ∈ 𝑡 ¬ 𝑢 ∈ ( ( LSpan ‘ 𝐸 ) ‘ ( 𝑡 ∖ { 𝑢 } ) ) ) → ∃ 𝑠 ∈ ( LBasis ‘ 𝐸 ) 𝑡 ⊆ 𝑠 ) |
92 |
53 59 90 91
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) → ∃ 𝑠 ∈ ( LBasis ‘ 𝐸 ) 𝑡 ⊆ 𝑠 ) |
93 |
52 92
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( LBasis ‘ ( 𝐸 ↾s 𝐿 ) ) ) → 𝐿 = 𝐵 ) |
94 |
12 93
|
n0limd |
⊢ ( 𝜑 → 𝐿 = 𝐵 ) |