| Step |
Hyp |
Ref |
Expression |
| 1 |
|
assarrginv.1 |
⊢ 𝐸 = ( RLReg ‘ 𝐴 ) |
| 2 |
|
assarrginv.2 |
⊢ 𝑈 = ( Unit ‘ 𝐴 ) |
| 3 |
|
assarrginv.3 |
⊢ 𝐾 = ( Scalar ‘ 𝐴 ) |
| 4 |
|
assarrginv.4 |
⊢ ( 𝜑 → 𝐴 ∈ AssAlg ) |
| 5 |
|
assarrginv.5 |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
| 6 |
|
assarrginv.6 |
⊢ ( 𝜑 → ( dim ‘ 𝐴 ) ∈ ℕ0 ) |
| 7 |
|
assarrginv.7 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 9 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
| 10 |
|
eqid |
⊢ ( 𝑎 ∈ ( Base ‘ 𝐴 ) ↦ ( 𝑋 ( .r ‘ 𝐴 ) 𝑎 ) ) = ( 𝑎 ∈ ( Base ‘ 𝐴 ) ↦ ( 𝑋 ( .r ‘ 𝐴 ) 𝑎 ) ) |
| 11 |
8 9 10 4 1 3 5 6 7
|
assalactf1o |
⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝐴 ) ↦ ( 𝑋 ( .r ‘ 𝐴 ) 𝑎 ) ) : ( Base ‘ 𝐴 ) –1-1-onto→ ( Base ‘ 𝐴 ) ) |
| 12 |
|
eqid |
⊢ ( mulGrp ‘ 𝐴 ) = ( mulGrp ‘ 𝐴 ) |
| 13 |
12 8
|
mgpbas |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ ( mulGrp ‘ 𝐴 ) ) |
| 14 |
|
eqid |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) |
| 15 |
12 14
|
ringidval |
⊢ ( 1r ‘ 𝐴 ) = ( 0g ‘ ( mulGrp ‘ 𝐴 ) ) |
| 16 |
12 9
|
mgpplusg |
⊢ ( .r ‘ 𝐴 ) = ( +g ‘ ( mulGrp ‘ 𝐴 ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑋 ( .r ‘ 𝐴 ) 𝑎 ) = ( 𝑋 ( .r ‘ 𝐴 ) 𝑏 ) ) |
| 18 |
17
|
cbvmptv |
⊢ ( 𝑎 ∈ ( Base ‘ 𝐴 ) ↦ ( 𝑋 ( .r ‘ 𝐴 ) 𝑎 ) ) = ( 𝑏 ∈ ( Base ‘ 𝐴 ) ↦ ( 𝑋 ( .r ‘ 𝐴 ) 𝑏 ) ) |
| 19 |
|
assaring |
⊢ ( 𝐴 ∈ AssAlg → 𝐴 ∈ Ring ) |
| 20 |
4 19
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ Ring ) |
| 21 |
12
|
ringmgp |
⊢ ( 𝐴 ∈ Ring → ( mulGrp ‘ 𝐴 ) ∈ Mnd ) |
| 22 |
20 21
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝐴 ) ∈ Mnd ) |
| 23 |
1 8
|
rrgss |
⊢ 𝐸 ⊆ ( Base ‘ 𝐴 ) |
| 24 |
23 7
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐴 ) ) |
| 25 |
13 15 16 18 22 24
|
mndlactf1o |
⊢ ( 𝜑 → ( ( 𝑎 ∈ ( Base ‘ 𝐴 ) ↦ ( 𝑋 ( .r ‘ 𝐴 ) 𝑎 ) ) : ( Base ‘ 𝐴 ) –1-1-onto→ ( Base ‘ 𝐴 ) ↔ ∃ 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑋 ( .r ‘ 𝐴 ) 𝑧 ) = ( 1r ‘ 𝐴 ) ∧ ( 𝑧 ( .r ‘ 𝐴 ) 𝑋 ) = ( 1r ‘ 𝐴 ) ) ) ) |
| 26 |
11 25
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑋 ( .r ‘ 𝐴 ) 𝑧 ) = ( 1r ‘ 𝐴 ) ∧ ( 𝑧 ( .r ‘ 𝐴 ) 𝑋 ) = ( 1r ‘ 𝐴 ) ) ) |
| 27 |
8 2 9 14 24 20
|
isunit3 |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ ∃ 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑋 ( .r ‘ 𝐴 ) 𝑧 ) = ( 1r ‘ 𝐴 ) ∧ ( 𝑧 ( .r ‘ 𝐴 ) 𝑋 ) = ( 1r ‘ 𝐴 ) ) ) ) |
| 28 |
26 27
|
mpbird |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |