Step |
Hyp |
Ref |
Expression |
1 |
|
mndlactf1o.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
2 |
|
mndlactf1o.z |
⊢ 0 = ( 0g ‘ 𝐸 ) |
3 |
|
mndlactf1o.p |
⊢ + = ( +g ‘ 𝐸 ) |
4 |
|
mndlactf1o.f |
⊢ 𝐹 = ( 𝑎 ∈ 𝐵 ↦ ( 𝑋 + 𝑎 ) ) |
5 |
|
mndlactf1o.e |
⊢ ( 𝜑 → 𝐸 ∈ Mnd ) |
6 |
|
mndlactf1o.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
oveq2 |
⊢ ( 𝑦 = 𝑢 → ( 𝑋 + 𝑦 ) = ( 𝑋 + 𝑢 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑦 = 𝑢 → ( ( 𝑋 + 𝑦 ) = 0 ↔ ( 𝑋 + 𝑢 ) = 0 ) ) |
9 |
|
oveq1 |
⊢ ( 𝑦 = 𝑢 → ( 𝑦 + 𝑋 ) = ( 𝑢 + 𝑋 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑦 = 𝑢 → ( ( 𝑦 + 𝑋 ) = 0 ↔ ( 𝑢 + 𝑋 ) = 0 ) ) |
11 |
8 10
|
anbi12d |
⊢ ( 𝑦 = 𝑢 → ( ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ↔ ( ( 𝑋 + 𝑢 ) = 0 ∧ ( 𝑢 + 𝑋 ) = 0 ) ) ) |
12 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → 𝑢 ∈ 𝐵 ) |
13 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → ( 𝑋 + 𝑢 ) = 0 ) |
14 |
5
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → 𝐸 ∈ Mnd ) |
15 |
6
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → 𝑋 ∈ 𝐵 ) |
16 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → 𝑣 ∈ 𝐵 ) |
17 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → ( 𝑣 + 𝑋 ) = 0 ) |
18 |
1 2 3 14 15 16 12 17 13
|
mndlrinv |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → 𝑣 = 𝑢 ) |
19 |
18
|
oveq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → ( 𝑣 + 𝑋 ) = ( 𝑢 + 𝑋 ) ) |
20 |
19 17
|
eqtr3d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → ( 𝑢 + 𝑋 ) = 0 ) |
21 |
13 20
|
jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → ( ( 𝑋 + 𝑢 ) = 0 ∧ ( 𝑢 + 𝑋 ) = 0 ) ) |
22 |
11 12 21
|
rspcedvdw |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) |
23 |
|
f1ofo |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 → 𝐹 : 𝐵 –onto→ 𝐵 ) |
24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → 𝐹 : 𝐵 –onto→ 𝐵 ) |
25 |
1 2 3 4 5 6
|
mndlactfo |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 –onto→ 𝐵 ↔ ∃ 𝑢 ∈ 𝐵 ( 𝑋 + 𝑢 ) = 0 ) ) |
26 |
25
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –onto→ 𝐵 ) → ∃ 𝑢 ∈ 𝐵 ( 𝑋 + 𝑢 ) = 0 ) |
27 |
24 26
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ∃ 𝑢 ∈ 𝐵 ( 𝑋 + 𝑢 ) = 0 ) |
28 |
27
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) → ∃ 𝑢 ∈ 𝐵 ( 𝑋 + 𝑢 ) = 0 ) |
29 |
22 28
|
r19.29a |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) |
30 |
|
oveq1 |
⊢ ( 𝑣 = ( ◡ 𝐹 ‘ 0 ) → ( 𝑣 + 𝑋 ) = ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) ) |
31 |
30
|
eqeq1d |
⊢ ( 𝑣 = ( ◡ 𝐹 ‘ 0 ) → ( ( 𝑣 + 𝑋 ) = 0 ↔ ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) = 0 ) ) |
32 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
33 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 ⟶ 𝐵 ) |
34 |
32 33
|
syl |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 ⟶ 𝐵 ) |
35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ◡ 𝐹 : 𝐵 ⟶ 𝐵 ) |
36 |
1 2
|
mndidcl |
⊢ ( 𝐸 ∈ Mnd → 0 ∈ 𝐵 ) |
37 |
5 36
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → 0 ∈ 𝐵 ) |
39 |
35 38
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ( ◡ 𝐹 ‘ 0 ) ∈ 𝐵 ) |
40 |
|
f1of1 |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 → 𝐹 : 𝐵 –1-1→ 𝐵 ) |
41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → 𝐹 : 𝐵 –1-1→ 𝐵 ) |
42 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → 𝐸 ∈ Mnd ) |
43 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
44 |
1 3 42 39 43
|
mndcld |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) ∈ 𝐵 ) |
45 |
44 38
|
jca |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ( ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) ∈ 𝐵 ∧ 0 ∈ 𝐵 ) ) |
46 |
1 3 2
|
mndrid |
⊢ ( ( 𝐸 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + 0 ) = 𝑋 ) |
47 |
42 43 46
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝑋 + 0 ) = 𝑋 ) |
48 |
|
oveq2 |
⊢ ( 𝑎 = 0 → ( 𝑋 + 𝑎 ) = ( 𝑋 + 0 ) ) |
49 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝑋 + 0 ) ∈ V ) |
50 |
4 48 38 49
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝐹 ‘ 0 ) = ( 𝑋 + 0 ) ) |
51 |
|
oveq2 |
⊢ ( 𝑎 = ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) → ( 𝑋 + 𝑎 ) = ( 𝑋 + ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) ) ) |
52 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝑋 + ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) ) ∈ V ) |
53 |
4 51 44 52
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) ) = ( 𝑋 + ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) ) ) |
54 |
|
oveq2 |
⊢ ( 𝑎 = ( ◡ 𝐹 ‘ 0 ) → ( 𝑋 + 𝑎 ) = ( 𝑋 + ( ◡ 𝐹 ‘ 0 ) ) ) |
55 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝑋 + ( ◡ 𝐹 ‘ 0 ) ) ∈ V ) |
56 |
4 54 39 55
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 0 ) ) = ( 𝑋 + ( ◡ 𝐹 ‘ 0 ) ) ) |
57 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
58 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 ∧ 0 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 0 ) ) = 0 ) |
59 |
57 38 58
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 0 ) ) = 0 ) |
60 |
56 59
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝑋 + ( ◡ 𝐹 ‘ 0 ) ) = 0 ) |
61 |
60
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ( ( 𝑋 + ( ◡ 𝐹 ‘ 0 ) ) + 𝑋 ) = ( 0 + 𝑋 ) ) |
62 |
1 3 42 43 39 43
|
mndassd |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ( ( 𝑋 + ( ◡ 𝐹 ‘ 0 ) ) + 𝑋 ) = ( 𝑋 + ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) ) ) |
63 |
1 3 2
|
mndlid |
⊢ ( ( 𝐸 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( 0 + 𝑋 ) = 𝑋 ) |
64 |
42 43 63
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ( 0 + 𝑋 ) = 𝑋 ) |
65 |
61 62 64
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝑋 + ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) ) = 𝑋 ) |
66 |
53 65
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) ) = 𝑋 ) |
67 |
47 50 66
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) ) = ( 𝐹 ‘ 0 ) ) |
68 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐵 ∧ ( ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) ∈ 𝐵 ∧ 0 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) ) = ( 𝐹 ‘ 0 ) ↔ ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) = 0 ) ) |
69 |
68
|
biimpa |
⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐵 ∧ ( ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) ∈ 𝐵 ∧ 0 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) ) = ( 𝐹 ‘ 0 ) ) → ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) = 0 ) |
70 |
41 45 67 69
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ( ( ◡ 𝐹 ‘ 0 ) + 𝑋 ) = 0 ) |
71 |
31 39 70
|
rspcedvdw |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ∃ 𝑣 ∈ 𝐵 ( 𝑣 + 𝑋 ) = 0 ) |
72 |
29 71
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) |
73 |
|
oveq1 |
⊢ ( 𝑣 = 𝑦 → ( 𝑣 + 𝑋 ) = ( 𝑦 + 𝑋 ) ) |
74 |
73
|
eqeq1d |
⊢ ( 𝑣 = 𝑦 → ( ( 𝑣 + 𝑋 ) = 0 ↔ ( 𝑦 + 𝑋 ) = 0 ) ) |
75 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) → 𝑦 ∈ 𝐵 ) |
76 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) → ( 𝑦 + 𝑋 ) = 0 ) |
77 |
74 75 76
|
rspcedvdw |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) → ∃ 𝑣 ∈ 𝐵 ( 𝑣 + 𝑋 ) = 0 ) |
78 |
|
oveq2 |
⊢ ( 𝑢 = 𝑦 → ( 𝑋 + 𝑢 ) = ( 𝑋 + 𝑦 ) ) |
79 |
78
|
eqeq1d |
⊢ ( 𝑢 = 𝑦 → ( ( 𝑋 + 𝑢 ) = 0 ↔ ( 𝑋 + 𝑦 ) = 0 ) ) |
80 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) → ( 𝑋 + 𝑦 ) = 0 ) |
81 |
79 75 80
|
rspcedvdw |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) → ∃ 𝑢 ∈ 𝐵 ( 𝑋 + 𝑢 ) = 0 ) |
82 |
77 81
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) → ( ∃ 𝑣 ∈ 𝐵 ( 𝑣 + 𝑋 ) = 0 ∧ ∃ 𝑢 ∈ 𝐵 ( 𝑋 + 𝑢 ) = 0 ) ) |
83 |
82
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) → ( ∃ 𝑣 ∈ 𝐵 ( 𝑣 + 𝑋 ) = 0 ∧ ∃ 𝑢 ∈ 𝐵 ( 𝑋 + 𝑢 ) = 0 ) ) |
84 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) → 𝐸 ∈ Mnd ) |
85 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) → 𝑋 ∈ 𝐵 ) |
86 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) → 𝑣 ∈ 𝐵 ) |
87 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) → ( 𝑣 + 𝑋 ) = 0 ) |
88 |
1 2 3 4 84 85 86 87
|
mndlactf1 |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) → 𝐹 : 𝐵 –1-1→ 𝐵 ) |
89 |
88
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑣 ∈ 𝐵 ( 𝑣 + 𝑋 ) = 0 ) → 𝐹 : 𝐵 –1-1→ 𝐵 ) |
90 |
25
|
biimpar |
⊢ ( ( 𝜑 ∧ ∃ 𝑢 ∈ 𝐵 ( 𝑋 + 𝑢 ) = 0 ) → 𝐹 : 𝐵 –onto→ 𝐵 ) |
91 |
89 90
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( ∃ 𝑣 ∈ 𝐵 ( 𝑣 + 𝑋 ) = 0 ∧ ∃ 𝑢 ∈ 𝐵 ( 𝑋 + 𝑢 ) = 0 ) ) → ( 𝐹 : 𝐵 –1-1→ 𝐵 ∧ 𝐹 : 𝐵 –onto→ 𝐵 ) ) |
92 |
|
df-f1o |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐵 –1-1→ 𝐵 ∧ 𝐹 : 𝐵 –onto→ 𝐵 ) ) |
93 |
91 92
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ∃ 𝑣 ∈ 𝐵 ( 𝑣 + 𝑋 ) = 0 ∧ ∃ 𝑢 ∈ 𝐵 ( 𝑋 + 𝑢 ) = 0 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
94 |
83 93
|
syldan |
⊢ ( ( 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
95 |
72 94
|
impbida |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 ↔ ∃ 𝑦 ∈ 𝐵 ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) ) |