Metamath Proof Explorer


Theorem mndlactf1o

Description: An element X of a monoid E is invertible iff its left-translation F is bijective. See also grplactf1o . Remark in chapter I. of BourbakiAlg1 p. 17. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses mndlactf1o.b 𝐵 = ( Base ‘ 𝐸 )
mndlactf1o.z 0 = ( 0g𝐸 )
mndlactf1o.p + = ( +g𝐸 )
mndlactf1o.f 𝐹 = ( 𝑎𝐵 ↦ ( 𝑋 + 𝑎 ) )
mndlactf1o.e ( 𝜑𝐸 ∈ Mnd )
mndlactf1o.x ( 𝜑𝑋𝐵 )
Assertion mndlactf1o ( 𝜑 → ( 𝐹 : 𝐵1-1-onto𝐵 ↔ ∃ 𝑦𝐵 ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) )

Proof

Step Hyp Ref Expression
1 mndlactf1o.b 𝐵 = ( Base ‘ 𝐸 )
2 mndlactf1o.z 0 = ( 0g𝐸 )
3 mndlactf1o.p + = ( +g𝐸 )
4 mndlactf1o.f 𝐹 = ( 𝑎𝐵 ↦ ( 𝑋 + 𝑎 ) )
5 mndlactf1o.e ( 𝜑𝐸 ∈ Mnd )
6 mndlactf1o.x ( 𝜑𝑋𝐵 )
7 oveq2 ( 𝑦 = 𝑢 → ( 𝑋 + 𝑦 ) = ( 𝑋 + 𝑢 ) )
8 7 eqeq1d ( 𝑦 = 𝑢 → ( ( 𝑋 + 𝑦 ) = 0 ↔ ( 𝑋 + 𝑢 ) = 0 ) )
9 oveq1 ( 𝑦 = 𝑢 → ( 𝑦 + 𝑋 ) = ( 𝑢 + 𝑋 ) )
10 9 eqeq1d ( 𝑦 = 𝑢 → ( ( 𝑦 + 𝑋 ) = 0 ↔ ( 𝑢 + 𝑋 ) = 0 ) )
11 8 10 anbi12d ( 𝑦 = 𝑢 → ( ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ↔ ( ( 𝑋 + 𝑢 ) = 0 ∧ ( 𝑢 + 𝑋 ) = 0 ) ) )
12 simplr ( ( ( ( ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → 𝑢𝐵 )
13 simpr ( ( ( ( ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → ( 𝑋 + 𝑢 ) = 0 )
14 5 ad5antr ( ( ( ( ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → 𝐸 ∈ Mnd )
15 6 ad5antr ( ( ( ( ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → 𝑋𝐵 )
16 simp-4r ( ( ( ( ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → 𝑣𝐵 )
17 simpllr ( ( ( ( ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → ( 𝑣 + 𝑋 ) = 0 )
18 1 2 3 14 15 16 12 17 13 mndlrinv ( ( ( ( ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → 𝑣 = 𝑢 )
19 18 oveq1d ( ( ( ( ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → ( 𝑣 + 𝑋 ) = ( 𝑢 + 𝑋 ) )
20 19 17 eqtr3d ( ( ( ( ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → ( 𝑢 + 𝑋 ) = 0 )
21 13 20 jca ( ( ( ( ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → ( ( 𝑋 + 𝑢 ) = 0 ∧ ( 𝑢 + 𝑋 ) = 0 ) )
22 11 12 21 rspcedvdw ( ( ( ( ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑢𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → ∃ 𝑦𝐵 ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) )
23 f1ofo ( 𝐹 : 𝐵1-1-onto𝐵𝐹 : 𝐵onto𝐵 )
24 23 adantl ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → 𝐹 : 𝐵onto𝐵 )
25 1 2 3 4 5 6 mndlactfo ( 𝜑 → ( 𝐹 : 𝐵onto𝐵 ↔ ∃ 𝑢𝐵 ( 𝑋 + 𝑢 ) = 0 ) )
26 25 biimpa ( ( 𝜑𝐹 : 𝐵onto𝐵 ) → ∃ 𝑢𝐵 ( 𝑋 + 𝑢 ) = 0 )
27 24 26 syldan ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ∃ 𝑢𝐵 ( 𝑋 + 𝑢 ) = 0 )
28 27 ad2antrr ( ( ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) → ∃ 𝑢𝐵 ( 𝑋 + 𝑢 ) = 0 )
29 22 28 r19.29a ( ( ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) → ∃ 𝑦𝐵 ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) )
30 oveq1 ( 𝑣 = ( 𝐹0 ) → ( 𝑣 + 𝑋 ) = ( ( 𝐹0 ) + 𝑋 ) )
31 30 eqeq1d ( 𝑣 = ( 𝐹0 ) → ( ( 𝑣 + 𝑋 ) = 0 ↔ ( ( 𝐹0 ) + 𝑋 ) = 0 ) )
32 f1ocnv ( 𝐹 : 𝐵1-1-onto𝐵 𝐹 : 𝐵1-1-onto𝐵 )
33 f1of ( 𝐹 : 𝐵1-1-onto𝐵 𝐹 : 𝐵𝐵 )
34 32 33 syl ( 𝐹 : 𝐵1-1-onto𝐵 𝐹 : 𝐵𝐵 )
35 34 adantl ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → 𝐹 : 𝐵𝐵 )
36 1 2 mndidcl ( 𝐸 ∈ Mnd → 0𝐵 )
37 5 36 syl ( 𝜑0𝐵 )
38 37 adantr ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → 0𝐵 )
39 35 38 ffvelcdmd ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ( 𝐹0 ) ∈ 𝐵 )
40 f1of1 ( 𝐹 : 𝐵1-1-onto𝐵𝐹 : 𝐵1-1𝐵 )
41 40 adantl ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → 𝐹 : 𝐵1-1𝐵 )
42 5 adantr ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → 𝐸 ∈ Mnd )
43 6 adantr ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → 𝑋𝐵 )
44 1 3 42 39 43 mndcld ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ( ( 𝐹0 ) + 𝑋 ) ∈ 𝐵 )
45 44 38 jca ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ( ( ( 𝐹0 ) + 𝑋 ) ∈ 𝐵0𝐵 ) )
46 1 3 2 mndrid ( ( 𝐸 ∈ Mnd ∧ 𝑋𝐵 ) → ( 𝑋 + 0 ) = 𝑋 )
47 42 43 46 syl2anc ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ( 𝑋 + 0 ) = 𝑋 )
48 oveq2 ( 𝑎 = 0 → ( 𝑋 + 𝑎 ) = ( 𝑋 + 0 ) )
49 ovexd ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ( 𝑋 + 0 ) ∈ V )
50 4 48 38 49 fvmptd3 ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ( 𝐹0 ) = ( 𝑋 + 0 ) )
51 oveq2 ( 𝑎 = ( ( 𝐹0 ) + 𝑋 ) → ( 𝑋 + 𝑎 ) = ( 𝑋 + ( ( 𝐹0 ) + 𝑋 ) ) )
52 ovexd ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ( 𝑋 + ( ( 𝐹0 ) + 𝑋 ) ) ∈ V )
53 4 51 44 52 fvmptd3 ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ( 𝐹 ‘ ( ( 𝐹0 ) + 𝑋 ) ) = ( 𝑋 + ( ( 𝐹0 ) + 𝑋 ) ) )
54 oveq2 ( 𝑎 = ( 𝐹0 ) → ( 𝑋 + 𝑎 ) = ( 𝑋 + ( 𝐹0 ) ) )
55 ovexd ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ( 𝑋 + ( 𝐹0 ) ) ∈ V )
56 4 54 39 55 fvmptd3 ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ( 𝐹 ‘ ( 𝐹0 ) ) = ( 𝑋 + ( 𝐹0 ) ) )
57 simpr ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → 𝐹 : 𝐵1-1-onto𝐵 )
58 f1ocnvfv2 ( ( 𝐹 : 𝐵1-1-onto𝐵0𝐵 ) → ( 𝐹 ‘ ( 𝐹0 ) ) = 0 )
59 57 38 58 syl2anc ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ( 𝐹 ‘ ( 𝐹0 ) ) = 0 )
60 56 59 eqtr3d ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ( 𝑋 + ( 𝐹0 ) ) = 0 )
61 60 oveq1d ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ( ( 𝑋 + ( 𝐹0 ) ) + 𝑋 ) = ( 0 + 𝑋 ) )
62 1 3 42 43 39 43 mndassd ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ( ( 𝑋 + ( 𝐹0 ) ) + 𝑋 ) = ( 𝑋 + ( ( 𝐹0 ) + 𝑋 ) ) )
63 1 3 2 mndlid ( ( 𝐸 ∈ Mnd ∧ 𝑋𝐵 ) → ( 0 + 𝑋 ) = 𝑋 )
64 42 43 63 syl2anc ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ( 0 + 𝑋 ) = 𝑋 )
65 61 62 64 3eqtr3d ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ( 𝑋 + ( ( 𝐹0 ) + 𝑋 ) ) = 𝑋 )
66 53 65 eqtrd ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ( 𝐹 ‘ ( ( 𝐹0 ) + 𝑋 ) ) = 𝑋 )
67 47 50 66 3eqtr4rd ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ( 𝐹 ‘ ( ( 𝐹0 ) + 𝑋 ) ) = ( 𝐹0 ) )
68 f1fveq ( ( 𝐹 : 𝐵1-1𝐵 ∧ ( ( ( 𝐹0 ) + 𝑋 ) ∈ 𝐵0𝐵 ) ) → ( ( 𝐹 ‘ ( ( 𝐹0 ) + 𝑋 ) ) = ( 𝐹0 ) ↔ ( ( 𝐹0 ) + 𝑋 ) = 0 ) )
69 68 biimpa ( ( ( 𝐹 : 𝐵1-1𝐵 ∧ ( ( ( 𝐹0 ) + 𝑋 ) ∈ 𝐵0𝐵 ) ) ∧ ( 𝐹 ‘ ( ( 𝐹0 ) + 𝑋 ) ) = ( 𝐹0 ) ) → ( ( 𝐹0 ) + 𝑋 ) = 0 )
70 41 45 67 69 syl21anc ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ( ( 𝐹0 ) + 𝑋 ) = 0 )
71 31 39 70 rspcedvdw ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ∃ 𝑣𝐵 ( 𝑣 + 𝑋 ) = 0 )
72 29 71 r19.29a ( ( 𝜑𝐹 : 𝐵1-1-onto𝐵 ) → ∃ 𝑦𝐵 ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) )
73 oveq1 ( 𝑣 = 𝑦 → ( 𝑣 + 𝑋 ) = ( 𝑦 + 𝑋 ) )
74 73 eqeq1d ( 𝑣 = 𝑦 → ( ( 𝑣 + 𝑋 ) = 0 ↔ ( 𝑦 + 𝑋 ) = 0 ) )
75 simplr ( ( ( 𝜑𝑦𝐵 ) ∧ ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) → 𝑦𝐵 )
76 simprr ( ( ( 𝜑𝑦𝐵 ) ∧ ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) → ( 𝑦 + 𝑋 ) = 0 )
77 74 75 76 rspcedvdw ( ( ( 𝜑𝑦𝐵 ) ∧ ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) → ∃ 𝑣𝐵 ( 𝑣 + 𝑋 ) = 0 )
78 oveq2 ( 𝑢 = 𝑦 → ( 𝑋 + 𝑢 ) = ( 𝑋 + 𝑦 ) )
79 78 eqeq1d ( 𝑢 = 𝑦 → ( ( 𝑋 + 𝑢 ) = 0 ↔ ( 𝑋 + 𝑦 ) = 0 ) )
80 simprl ( ( ( 𝜑𝑦𝐵 ) ∧ ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) → ( 𝑋 + 𝑦 ) = 0 )
81 79 75 80 rspcedvdw ( ( ( 𝜑𝑦𝐵 ) ∧ ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) → ∃ 𝑢𝐵 ( 𝑋 + 𝑢 ) = 0 )
82 77 81 jca ( ( ( 𝜑𝑦𝐵 ) ∧ ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) → ( ∃ 𝑣𝐵 ( 𝑣 + 𝑋 ) = 0 ∧ ∃ 𝑢𝐵 ( 𝑋 + 𝑢 ) = 0 ) )
83 82 r19.29an ( ( 𝜑 ∧ ∃ 𝑦𝐵 ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) → ( ∃ 𝑣𝐵 ( 𝑣 + 𝑋 ) = 0 ∧ ∃ 𝑢𝐵 ( 𝑋 + 𝑢 ) = 0 ) )
84 5 ad2antrr ( ( ( 𝜑𝑣𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) → 𝐸 ∈ Mnd )
85 6 ad2antrr ( ( ( 𝜑𝑣𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) → 𝑋𝐵 )
86 simplr ( ( ( 𝜑𝑣𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) → 𝑣𝐵 )
87 simpr ( ( ( 𝜑𝑣𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) → ( 𝑣 + 𝑋 ) = 0 )
88 1 2 3 4 84 85 86 87 mndlactf1 ( ( ( 𝜑𝑣𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) → 𝐹 : 𝐵1-1𝐵 )
89 88 r19.29an ( ( 𝜑 ∧ ∃ 𝑣𝐵 ( 𝑣 + 𝑋 ) = 0 ) → 𝐹 : 𝐵1-1𝐵 )
90 25 biimpar ( ( 𝜑 ∧ ∃ 𝑢𝐵 ( 𝑋 + 𝑢 ) = 0 ) → 𝐹 : 𝐵onto𝐵 )
91 89 90 anim12dan ( ( 𝜑 ∧ ( ∃ 𝑣𝐵 ( 𝑣 + 𝑋 ) = 0 ∧ ∃ 𝑢𝐵 ( 𝑋 + 𝑢 ) = 0 ) ) → ( 𝐹 : 𝐵1-1𝐵𝐹 : 𝐵onto𝐵 ) )
92 df-f1o ( 𝐹 : 𝐵1-1-onto𝐵 ↔ ( 𝐹 : 𝐵1-1𝐵𝐹 : 𝐵onto𝐵 ) )
93 91 92 sylibr ( ( 𝜑 ∧ ( ∃ 𝑣𝐵 ( 𝑣 + 𝑋 ) = 0 ∧ ∃ 𝑢𝐵 ( 𝑋 + 𝑢 ) = 0 ) ) → 𝐹 : 𝐵1-1-onto𝐵 )
94 83 93 syldan ( ( 𝜑 ∧ ∃ 𝑦𝐵 ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) → 𝐹 : 𝐵1-1-onto𝐵 )
95 72 94 impbida ( 𝜑 → ( 𝐹 : 𝐵1-1-onto𝐵 ↔ ∃ 𝑦𝐵 ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) )