Step |
Hyp |
Ref |
Expression |
1 |
|
mndlactf1o.b |
|- B = ( Base ` E ) |
2 |
|
mndlactf1o.z |
|- .0. = ( 0g ` E ) |
3 |
|
mndlactf1o.p |
|- .+ = ( +g ` E ) |
4 |
|
mndlactf1o.f |
|- F = ( a e. B |-> ( X .+ a ) ) |
5 |
|
mndlactf1o.e |
|- ( ph -> E e. Mnd ) |
6 |
|
mndlactf1o.x |
|- ( ph -> X e. B ) |
7 |
|
oveq2 |
|- ( y = u -> ( X .+ y ) = ( X .+ u ) ) |
8 |
7
|
eqeq1d |
|- ( y = u -> ( ( X .+ y ) = .0. <-> ( X .+ u ) = .0. ) ) |
9 |
|
oveq1 |
|- ( y = u -> ( y .+ X ) = ( u .+ X ) ) |
10 |
9
|
eqeq1d |
|- ( y = u -> ( ( y .+ X ) = .0. <-> ( u .+ X ) = .0. ) ) |
11 |
8 10
|
anbi12d |
|- ( y = u -> ( ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) <-> ( ( X .+ u ) = .0. /\ ( u .+ X ) = .0. ) ) ) |
12 |
|
simplr |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> u e. B ) |
13 |
|
simpr |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> ( X .+ u ) = .0. ) |
14 |
5
|
ad5antr |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> E e. Mnd ) |
15 |
6
|
ad5antr |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> X e. B ) |
16 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> v e. B ) |
17 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> ( v .+ X ) = .0. ) |
18 |
1 2 3 14 15 16 12 17 13
|
mndlrinv |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> v = u ) |
19 |
18
|
oveq1d |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> ( v .+ X ) = ( u .+ X ) ) |
20 |
19 17
|
eqtr3d |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> ( u .+ X ) = .0. ) |
21 |
13 20
|
jca |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> ( ( X .+ u ) = .0. /\ ( u .+ X ) = .0. ) ) |
22 |
11 12 21
|
rspcedvdw |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> E. y e. B ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) |
23 |
|
f1ofo |
|- ( F : B -1-1-onto-> B -> F : B -onto-> B ) |
24 |
23
|
adantl |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> F : B -onto-> B ) |
25 |
1 2 3 4 5 6
|
mndlactfo |
|- ( ph -> ( F : B -onto-> B <-> E. u e. B ( X .+ u ) = .0. ) ) |
26 |
25
|
biimpa |
|- ( ( ph /\ F : B -onto-> B ) -> E. u e. B ( X .+ u ) = .0. ) |
27 |
24 26
|
syldan |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> E. u e. B ( X .+ u ) = .0. ) |
28 |
27
|
ad2antrr |
|- ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) -> E. u e. B ( X .+ u ) = .0. ) |
29 |
22 28
|
r19.29a |
|- ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) -> E. y e. B ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) |
30 |
|
oveq1 |
|- ( v = ( `' F ` .0. ) -> ( v .+ X ) = ( ( `' F ` .0. ) .+ X ) ) |
31 |
30
|
eqeq1d |
|- ( v = ( `' F ` .0. ) -> ( ( v .+ X ) = .0. <-> ( ( `' F ` .0. ) .+ X ) = .0. ) ) |
32 |
|
f1ocnv |
|- ( F : B -1-1-onto-> B -> `' F : B -1-1-onto-> B ) |
33 |
|
f1of |
|- ( `' F : B -1-1-onto-> B -> `' F : B --> B ) |
34 |
32 33
|
syl |
|- ( F : B -1-1-onto-> B -> `' F : B --> B ) |
35 |
34
|
adantl |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> `' F : B --> B ) |
36 |
1 2
|
mndidcl |
|- ( E e. Mnd -> .0. e. B ) |
37 |
5 36
|
syl |
|- ( ph -> .0. e. B ) |
38 |
37
|
adantr |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> .0. e. B ) |
39 |
35 38
|
ffvelcdmd |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( `' F ` .0. ) e. B ) |
40 |
|
f1of1 |
|- ( F : B -1-1-onto-> B -> F : B -1-1-> B ) |
41 |
40
|
adantl |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> F : B -1-1-> B ) |
42 |
5
|
adantr |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> E e. Mnd ) |
43 |
6
|
adantr |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> X e. B ) |
44 |
1 3 42 39 43
|
mndcld |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( ( `' F ` .0. ) .+ X ) e. B ) |
45 |
44 38
|
jca |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( ( ( `' F ` .0. ) .+ X ) e. B /\ .0. e. B ) ) |
46 |
1 3 2
|
mndrid |
|- ( ( E e. Mnd /\ X e. B ) -> ( X .+ .0. ) = X ) |
47 |
42 43 46
|
syl2anc |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( X .+ .0. ) = X ) |
48 |
|
oveq2 |
|- ( a = .0. -> ( X .+ a ) = ( X .+ .0. ) ) |
49 |
|
ovexd |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( X .+ .0. ) e. _V ) |
50 |
4 48 38 49
|
fvmptd3 |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( F ` .0. ) = ( X .+ .0. ) ) |
51 |
|
oveq2 |
|- ( a = ( ( `' F ` .0. ) .+ X ) -> ( X .+ a ) = ( X .+ ( ( `' F ` .0. ) .+ X ) ) ) |
52 |
|
ovexd |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( X .+ ( ( `' F ` .0. ) .+ X ) ) e. _V ) |
53 |
4 51 44 52
|
fvmptd3 |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( F ` ( ( `' F ` .0. ) .+ X ) ) = ( X .+ ( ( `' F ` .0. ) .+ X ) ) ) |
54 |
|
oveq2 |
|- ( a = ( `' F ` .0. ) -> ( X .+ a ) = ( X .+ ( `' F ` .0. ) ) ) |
55 |
|
ovexd |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( X .+ ( `' F ` .0. ) ) e. _V ) |
56 |
4 54 39 55
|
fvmptd3 |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( F ` ( `' F ` .0. ) ) = ( X .+ ( `' F ` .0. ) ) ) |
57 |
|
simpr |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> F : B -1-1-onto-> B ) |
58 |
|
f1ocnvfv2 |
|- ( ( F : B -1-1-onto-> B /\ .0. e. B ) -> ( F ` ( `' F ` .0. ) ) = .0. ) |
59 |
57 38 58
|
syl2anc |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( F ` ( `' F ` .0. ) ) = .0. ) |
60 |
56 59
|
eqtr3d |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( X .+ ( `' F ` .0. ) ) = .0. ) |
61 |
60
|
oveq1d |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( ( X .+ ( `' F ` .0. ) ) .+ X ) = ( .0. .+ X ) ) |
62 |
1 3 42 43 39 43
|
mndassd |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( ( X .+ ( `' F ` .0. ) ) .+ X ) = ( X .+ ( ( `' F ` .0. ) .+ X ) ) ) |
63 |
1 3 2
|
mndlid |
|- ( ( E e. Mnd /\ X e. B ) -> ( .0. .+ X ) = X ) |
64 |
42 43 63
|
syl2anc |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( .0. .+ X ) = X ) |
65 |
61 62 64
|
3eqtr3d |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( X .+ ( ( `' F ` .0. ) .+ X ) ) = X ) |
66 |
53 65
|
eqtrd |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( F ` ( ( `' F ` .0. ) .+ X ) ) = X ) |
67 |
47 50 66
|
3eqtr4rd |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( F ` ( ( `' F ` .0. ) .+ X ) ) = ( F ` .0. ) ) |
68 |
|
f1fveq |
|- ( ( F : B -1-1-> B /\ ( ( ( `' F ` .0. ) .+ X ) e. B /\ .0. e. B ) ) -> ( ( F ` ( ( `' F ` .0. ) .+ X ) ) = ( F ` .0. ) <-> ( ( `' F ` .0. ) .+ X ) = .0. ) ) |
69 |
68
|
biimpa |
|- ( ( ( F : B -1-1-> B /\ ( ( ( `' F ` .0. ) .+ X ) e. B /\ .0. e. B ) ) /\ ( F ` ( ( `' F ` .0. ) .+ X ) ) = ( F ` .0. ) ) -> ( ( `' F ` .0. ) .+ X ) = .0. ) |
70 |
41 45 67 69
|
syl21anc |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( ( `' F ` .0. ) .+ X ) = .0. ) |
71 |
31 39 70
|
rspcedvdw |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> E. v e. B ( v .+ X ) = .0. ) |
72 |
29 71
|
r19.29a |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> E. y e. B ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) |
73 |
|
oveq1 |
|- ( v = y -> ( v .+ X ) = ( y .+ X ) ) |
74 |
73
|
eqeq1d |
|- ( v = y -> ( ( v .+ X ) = .0. <-> ( y .+ X ) = .0. ) ) |
75 |
|
simplr |
|- ( ( ( ph /\ y e. B ) /\ ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) -> y e. B ) |
76 |
|
simprr |
|- ( ( ( ph /\ y e. B ) /\ ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) -> ( y .+ X ) = .0. ) |
77 |
74 75 76
|
rspcedvdw |
|- ( ( ( ph /\ y e. B ) /\ ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) -> E. v e. B ( v .+ X ) = .0. ) |
78 |
|
oveq2 |
|- ( u = y -> ( X .+ u ) = ( X .+ y ) ) |
79 |
78
|
eqeq1d |
|- ( u = y -> ( ( X .+ u ) = .0. <-> ( X .+ y ) = .0. ) ) |
80 |
|
simprl |
|- ( ( ( ph /\ y e. B ) /\ ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) -> ( X .+ y ) = .0. ) |
81 |
79 75 80
|
rspcedvdw |
|- ( ( ( ph /\ y e. B ) /\ ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) -> E. u e. B ( X .+ u ) = .0. ) |
82 |
77 81
|
jca |
|- ( ( ( ph /\ y e. B ) /\ ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) -> ( E. v e. B ( v .+ X ) = .0. /\ E. u e. B ( X .+ u ) = .0. ) ) |
83 |
82
|
r19.29an |
|- ( ( ph /\ E. y e. B ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) -> ( E. v e. B ( v .+ X ) = .0. /\ E. u e. B ( X .+ u ) = .0. ) ) |
84 |
5
|
ad2antrr |
|- ( ( ( ph /\ v e. B ) /\ ( v .+ X ) = .0. ) -> E e. Mnd ) |
85 |
6
|
ad2antrr |
|- ( ( ( ph /\ v e. B ) /\ ( v .+ X ) = .0. ) -> X e. B ) |
86 |
|
simplr |
|- ( ( ( ph /\ v e. B ) /\ ( v .+ X ) = .0. ) -> v e. B ) |
87 |
|
simpr |
|- ( ( ( ph /\ v e. B ) /\ ( v .+ X ) = .0. ) -> ( v .+ X ) = .0. ) |
88 |
1 2 3 4 84 85 86 87
|
mndlactf1 |
|- ( ( ( ph /\ v e. B ) /\ ( v .+ X ) = .0. ) -> F : B -1-1-> B ) |
89 |
88
|
r19.29an |
|- ( ( ph /\ E. v e. B ( v .+ X ) = .0. ) -> F : B -1-1-> B ) |
90 |
25
|
biimpar |
|- ( ( ph /\ E. u e. B ( X .+ u ) = .0. ) -> F : B -onto-> B ) |
91 |
89 90
|
anim12dan |
|- ( ( ph /\ ( E. v e. B ( v .+ X ) = .0. /\ E. u e. B ( X .+ u ) = .0. ) ) -> ( F : B -1-1-> B /\ F : B -onto-> B ) ) |
92 |
|
df-f1o |
|- ( F : B -1-1-onto-> B <-> ( F : B -1-1-> B /\ F : B -onto-> B ) ) |
93 |
91 92
|
sylibr |
|- ( ( ph /\ ( E. v e. B ( v .+ X ) = .0. /\ E. u e. B ( X .+ u ) = .0. ) ) -> F : B -1-1-onto-> B ) |
94 |
83 93
|
syldan |
|- ( ( ph /\ E. y e. B ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) -> F : B -1-1-onto-> B ) |
95 |
72 94
|
impbida |
|- ( ph -> ( F : B -1-1-onto-> B <-> E. y e. B ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) ) |