| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mndlactf1o.b |
|- B = ( Base ` E ) |
| 2 |
|
mndlactf1o.z |
|- .0. = ( 0g ` E ) |
| 3 |
|
mndlactf1o.p |
|- .+ = ( +g ` E ) |
| 4 |
|
mndlactf1o.f |
|- F = ( a e. B |-> ( X .+ a ) ) |
| 5 |
|
mndlactf1o.e |
|- ( ph -> E e. Mnd ) |
| 6 |
|
mndlactf1o.x |
|- ( ph -> X e. B ) |
| 7 |
|
oveq2 |
|- ( y = u -> ( X .+ y ) = ( X .+ u ) ) |
| 8 |
7
|
eqeq1d |
|- ( y = u -> ( ( X .+ y ) = .0. <-> ( X .+ u ) = .0. ) ) |
| 9 |
|
oveq1 |
|- ( y = u -> ( y .+ X ) = ( u .+ X ) ) |
| 10 |
9
|
eqeq1d |
|- ( y = u -> ( ( y .+ X ) = .0. <-> ( u .+ X ) = .0. ) ) |
| 11 |
8 10
|
anbi12d |
|- ( y = u -> ( ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) <-> ( ( X .+ u ) = .0. /\ ( u .+ X ) = .0. ) ) ) |
| 12 |
|
simplr |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> u e. B ) |
| 13 |
|
simpr |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> ( X .+ u ) = .0. ) |
| 14 |
5
|
ad5antr |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> E e. Mnd ) |
| 15 |
6
|
ad5antr |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> X e. B ) |
| 16 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> v e. B ) |
| 17 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> ( v .+ X ) = .0. ) |
| 18 |
1 2 3 14 15 16 12 17 13
|
mndlrinv |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> v = u ) |
| 19 |
18
|
oveq1d |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> ( v .+ X ) = ( u .+ X ) ) |
| 20 |
19 17
|
eqtr3d |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> ( u .+ X ) = .0. ) |
| 21 |
13 20
|
jca |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> ( ( X .+ u ) = .0. /\ ( u .+ X ) = .0. ) ) |
| 22 |
11 12 21
|
rspcedvdw |
|- ( ( ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> E. y e. B ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) |
| 23 |
|
f1ofo |
|- ( F : B -1-1-onto-> B -> F : B -onto-> B ) |
| 24 |
23
|
adantl |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> F : B -onto-> B ) |
| 25 |
1 2 3 4 5 6
|
mndlactfo |
|- ( ph -> ( F : B -onto-> B <-> E. u e. B ( X .+ u ) = .0. ) ) |
| 26 |
25
|
biimpa |
|- ( ( ph /\ F : B -onto-> B ) -> E. u e. B ( X .+ u ) = .0. ) |
| 27 |
24 26
|
syldan |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> E. u e. B ( X .+ u ) = .0. ) |
| 28 |
27
|
ad2antrr |
|- ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) -> E. u e. B ( X .+ u ) = .0. ) |
| 29 |
22 28
|
r19.29a |
|- ( ( ( ( ph /\ F : B -1-1-onto-> B ) /\ v e. B ) /\ ( v .+ X ) = .0. ) -> E. y e. B ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) |
| 30 |
|
oveq1 |
|- ( v = ( `' F ` .0. ) -> ( v .+ X ) = ( ( `' F ` .0. ) .+ X ) ) |
| 31 |
30
|
eqeq1d |
|- ( v = ( `' F ` .0. ) -> ( ( v .+ X ) = .0. <-> ( ( `' F ` .0. ) .+ X ) = .0. ) ) |
| 32 |
|
f1ocnv |
|- ( F : B -1-1-onto-> B -> `' F : B -1-1-onto-> B ) |
| 33 |
|
f1of |
|- ( `' F : B -1-1-onto-> B -> `' F : B --> B ) |
| 34 |
32 33
|
syl |
|- ( F : B -1-1-onto-> B -> `' F : B --> B ) |
| 35 |
34
|
adantl |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> `' F : B --> B ) |
| 36 |
1 2
|
mndidcl |
|- ( E e. Mnd -> .0. e. B ) |
| 37 |
5 36
|
syl |
|- ( ph -> .0. e. B ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> .0. e. B ) |
| 39 |
35 38
|
ffvelcdmd |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( `' F ` .0. ) e. B ) |
| 40 |
|
f1of1 |
|- ( F : B -1-1-onto-> B -> F : B -1-1-> B ) |
| 41 |
40
|
adantl |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> F : B -1-1-> B ) |
| 42 |
5
|
adantr |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> E e. Mnd ) |
| 43 |
6
|
adantr |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> X e. B ) |
| 44 |
1 3 42 39 43
|
mndcld |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( ( `' F ` .0. ) .+ X ) e. B ) |
| 45 |
44 38
|
jca |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( ( ( `' F ` .0. ) .+ X ) e. B /\ .0. e. B ) ) |
| 46 |
1 3 2
|
mndrid |
|- ( ( E e. Mnd /\ X e. B ) -> ( X .+ .0. ) = X ) |
| 47 |
42 43 46
|
syl2anc |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( X .+ .0. ) = X ) |
| 48 |
|
oveq2 |
|- ( a = .0. -> ( X .+ a ) = ( X .+ .0. ) ) |
| 49 |
|
ovexd |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( X .+ .0. ) e. _V ) |
| 50 |
4 48 38 49
|
fvmptd3 |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( F ` .0. ) = ( X .+ .0. ) ) |
| 51 |
|
oveq2 |
|- ( a = ( ( `' F ` .0. ) .+ X ) -> ( X .+ a ) = ( X .+ ( ( `' F ` .0. ) .+ X ) ) ) |
| 52 |
|
ovexd |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( X .+ ( ( `' F ` .0. ) .+ X ) ) e. _V ) |
| 53 |
4 51 44 52
|
fvmptd3 |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( F ` ( ( `' F ` .0. ) .+ X ) ) = ( X .+ ( ( `' F ` .0. ) .+ X ) ) ) |
| 54 |
|
oveq2 |
|- ( a = ( `' F ` .0. ) -> ( X .+ a ) = ( X .+ ( `' F ` .0. ) ) ) |
| 55 |
|
ovexd |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( X .+ ( `' F ` .0. ) ) e. _V ) |
| 56 |
4 54 39 55
|
fvmptd3 |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( F ` ( `' F ` .0. ) ) = ( X .+ ( `' F ` .0. ) ) ) |
| 57 |
|
simpr |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> F : B -1-1-onto-> B ) |
| 58 |
|
f1ocnvfv2 |
|- ( ( F : B -1-1-onto-> B /\ .0. e. B ) -> ( F ` ( `' F ` .0. ) ) = .0. ) |
| 59 |
57 38 58
|
syl2anc |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( F ` ( `' F ` .0. ) ) = .0. ) |
| 60 |
56 59
|
eqtr3d |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( X .+ ( `' F ` .0. ) ) = .0. ) |
| 61 |
60
|
oveq1d |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( ( X .+ ( `' F ` .0. ) ) .+ X ) = ( .0. .+ X ) ) |
| 62 |
1 3 42 43 39 43
|
mndassd |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( ( X .+ ( `' F ` .0. ) ) .+ X ) = ( X .+ ( ( `' F ` .0. ) .+ X ) ) ) |
| 63 |
1 3 2
|
mndlid |
|- ( ( E e. Mnd /\ X e. B ) -> ( .0. .+ X ) = X ) |
| 64 |
42 43 63
|
syl2anc |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( .0. .+ X ) = X ) |
| 65 |
61 62 64
|
3eqtr3d |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( X .+ ( ( `' F ` .0. ) .+ X ) ) = X ) |
| 66 |
53 65
|
eqtrd |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( F ` ( ( `' F ` .0. ) .+ X ) ) = X ) |
| 67 |
47 50 66
|
3eqtr4rd |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( F ` ( ( `' F ` .0. ) .+ X ) ) = ( F ` .0. ) ) |
| 68 |
|
f1fveq |
|- ( ( F : B -1-1-> B /\ ( ( ( `' F ` .0. ) .+ X ) e. B /\ .0. e. B ) ) -> ( ( F ` ( ( `' F ` .0. ) .+ X ) ) = ( F ` .0. ) <-> ( ( `' F ` .0. ) .+ X ) = .0. ) ) |
| 69 |
68
|
biimpa |
|- ( ( ( F : B -1-1-> B /\ ( ( ( `' F ` .0. ) .+ X ) e. B /\ .0. e. B ) ) /\ ( F ` ( ( `' F ` .0. ) .+ X ) ) = ( F ` .0. ) ) -> ( ( `' F ` .0. ) .+ X ) = .0. ) |
| 70 |
41 45 67 69
|
syl21anc |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> ( ( `' F ` .0. ) .+ X ) = .0. ) |
| 71 |
31 39 70
|
rspcedvdw |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> E. v e. B ( v .+ X ) = .0. ) |
| 72 |
29 71
|
r19.29a |
|- ( ( ph /\ F : B -1-1-onto-> B ) -> E. y e. B ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) |
| 73 |
|
oveq1 |
|- ( v = y -> ( v .+ X ) = ( y .+ X ) ) |
| 74 |
73
|
eqeq1d |
|- ( v = y -> ( ( v .+ X ) = .0. <-> ( y .+ X ) = .0. ) ) |
| 75 |
|
simplr |
|- ( ( ( ph /\ y e. B ) /\ ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) -> y e. B ) |
| 76 |
|
simprr |
|- ( ( ( ph /\ y e. B ) /\ ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) -> ( y .+ X ) = .0. ) |
| 77 |
74 75 76
|
rspcedvdw |
|- ( ( ( ph /\ y e. B ) /\ ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) -> E. v e. B ( v .+ X ) = .0. ) |
| 78 |
|
oveq2 |
|- ( u = y -> ( X .+ u ) = ( X .+ y ) ) |
| 79 |
78
|
eqeq1d |
|- ( u = y -> ( ( X .+ u ) = .0. <-> ( X .+ y ) = .0. ) ) |
| 80 |
|
simprl |
|- ( ( ( ph /\ y e. B ) /\ ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) -> ( X .+ y ) = .0. ) |
| 81 |
79 75 80
|
rspcedvdw |
|- ( ( ( ph /\ y e. B ) /\ ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) -> E. u e. B ( X .+ u ) = .0. ) |
| 82 |
77 81
|
jca |
|- ( ( ( ph /\ y e. B ) /\ ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) -> ( E. v e. B ( v .+ X ) = .0. /\ E. u e. B ( X .+ u ) = .0. ) ) |
| 83 |
82
|
r19.29an |
|- ( ( ph /\ E. y e. B ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) -> ( E. v e. B ( v .+ X ) = .0. /\ E. u e. B ( X .+ u ) = .0. ) ) |
| 84 |
5
|
ad2antrr |
|- ( ( ( ph /\ v e. B ) /\ ( v .+ X ) = .0. ) -> E e. Mnd ) |
| 85 |
6
|
ad2antrr |
|- ( ( ( ph /\ v e. B ) /\ ( v .+ X ) = .0. ) -> X e. B ) |
| 86 |
|
simplr |
|- ( ( ( ph /\ v e. B ) /\ ( v .+ X ) = .0. ) -> v e. B ) |
| 87 |
|
simpr |
|- ( ( ( ph /\ v e. B ) /\ ( v .+ X ) = .0. ) -> ( v .+ X ) = .0. ) |
| 88 |
1 2 3 4 84 85 86 87
|
mndlactf1 |
|- ( ( ( ph /\ v e. B ) /\ ( v .+ X ) = .0. ) -> F : B -1-1-> B ) |
| 89 |
88
|
r19.29an |
|- ( ( ph /\ E. v e. B ( v .+ X ) = .0. ) -> F : B -1-1-> B ) |
| 90 |
25
|
biimpar |
|- ( ( ph /\ E. u e. B ( X .+ u ) = .0. ) -> F : B -onto-> B ) |
| 91 |
89 90
|
anim12dan |
|- ( ( ph /\ ( E. v e. B ( v .+ X ) = .0. /\ E. u e. B ( X .+ u ) = .0. ) ) -> ( F : B -1-1-> B /\ F : B -onto-> B ) ) |
| 92 |
|
df-f1o |
|- ( F : B -1-1-onto-> B <-> ( F : B -1-1-> B /\ F : B -onto-> B ) ) |
| 93 |
91 92
|
sylibr |
|- ( ( ph /\ ( E. v e. B ( v .+ X ) = .0. /\ E. u e. B ( X .+ u ) = .0. ) ) -> F : B -1-1-onto-> B ) |
| 94 |
83 93
|
syldan |
|- ( ( ph /\ E. y e. B ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) -> F : B -1-1-onto-> B ) |
| 95 |
72 94
|
impbida |
|- ( ph -> ( F : B -1-1-onto-> B <-> E. y e. B ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) ) |