| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mndractf1o.b |
|- B = ( Base ` E ) |
| 2 |
|
mndractf1o.z |
|- .0. = ( 0g ` E ) |
| 3 |
|
mndractf1o.p |
|- .+ = ( +g ` E ) |
| 4 |
|
mndractf1o.f |
|- G = ( a e. B |-> ( a .+ X ) ) |
| 5 |
|
mndractf1o.e |
|- ( ph -> E e. Mnd ) |
| 6 |
|
mndractf1o.x |
|- ( ph -> X e. B ) |
| 7 |
|
oveq2 |
|- ( v = ( `' G ` .0. ) -> ( X .+ v ) = ( X .+ ( `' G ` .0. ) ) ) |
| 8 |
7
|
eqeq1d |
|- ( v = ( `' G ` .0. ) -> ( ( X .+ v ) = .0. <-> ( X .+ ( `' G ` .0. ) ) = .0. ) ) |
| 9 |
|
f1ocnv |
|- ( G : B -1-1-onto-> B -> `' G : B -1-1-onto-> B ) |
| 10 |
|
f1of |
|- ( `' G : B -1-1-onto-> B -> `' G : B --> B ) |
| 11 |
9 10
|
syl |
|- ( G : B -1-1-onto-> B -> `' G : B --> B ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> `' G : B --> B ) |
| 13 |
1 2
|
mndidcl |
|- ( E e. Mnd -> .0. e. B ) |
| 14 |
5 13
|
syl |
|- ( ph -> .0. e. B ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> .0. e. B ) |
| 16 |
12 15
|
ffvelcdmd |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( `' G ` .0. ) e. B ) |
| 17 |
|
f1of1 |
|- ( G : B -1-1-onto-> B -> G : B -1-1-> B ) |
| 18 |
17
|
adantl |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> G : B -1-1-> B ) |
| 19 |
5
|
adantr |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> E e. Mnd ) |
| 20 |
6
|
adantr |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> X e. B ) |
| 21 |
1 3 19 20 16
|
mndcld |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( X .+ ( `' G ` .0. ) ) e. B ) |
| 22 |
21 15
|
jca |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( ( X .+ ( `' G ` .0. ) ) e. B /\ .0. e. B ) ) |
| 23 |
1 3 2
|
mndlid |
|- ( ( E e. Mnd /\ X e. B ) -> ( .0. .+ X ) = X ) |
| 24 |
19 20 23
|
syl2anc |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( .0. .+ X ) = X ) |
| 25 |
|
oveq1 |
|- ( a = .0. -> ( a .+ X ) = ( .0. .+ X ) ) |
| 26 |
|
ovexd |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( .0. .+ X ) e. _V ) |
| 27 |
4 25 15 26
|
fvmptd3 |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( G ` .0. ) = ( .0. .+ X ) ) |
| 28 |
|
oveq1 |
|- ( a = ( X .+ ( `' G ` .0. ) ) -> ( a .+ X ) = ( ( X .+ ( `' G ` .0. ) ) .+ X ) ) |
| 29 |
|
ovexd |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( ( X .+ ( `' G ` .0. ) ) .+ X ) e. _V ) |
| 30 |
4 28 21 29
|
fvmptd3 |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( G ` ( X .+ ( `' G ` .0. ) ) ) = ( ( X .+ ( `' G ` .0. ) ) .+ X ) ) |
| 31 |
1 3 19 20 16 20
|
mndassd |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( ( X .+ ( `' G ` .0. ) ) .+ X ) = ( X .+ ( ( `' G ` .0. ) .+ X ) ) ) |
| 32 |
|
oveq1 |
|- ( a = ( `' G ` .0. ) -> ( a .+ X ) = ( ( `' G ` .0. ) .+ X ) ) |
| 33 |
|
ovexd |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( ( `' G ` .0. ) .+ X ) e. _V ) |
| 34 |
4 32 16 33
|
fvmptd3 |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( G ` ( `' G ` .0. ) ) = ( ( `' G ` .0. ) .+ X ) ) |
| 35 |
|
simpr |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> G : B -1-1-onto-> B ) |
| 36 |
|
f1ocnvfv2 |
|- ( ( G : B -1-1-onto-> B /\ .0. e. B ) -> ( G ` ( `' G ` .0. ) ) = .0. ) |
| 37 |
35 15 36
|
syl2anc |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( G ` ( `' G ` .0. ) ) = .0. ) |
| 38 |
34 37
|
eqtr3d |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( ( `' G ` .0. ) .+ X ) = .0. ) |
| 39 |
38
|
oveq2d |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( X .+ ( ( `' G ` .0. ) .+ X ) ) = ( X .+ .0. ) ) |
| 40 |
1 3 2
|
mndrid |
|- ( ( E e. Mnd /\ X e. B ) -> ( X .+ .0. ) = X ) |
| 41 |
19 20 40
|
syl2anc |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( X .+ .0. ) = X ) |
| 42 |
31 39 41
|
3eqtrd |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( ( X .+ ( `' G ` .0. ) ) .+ X ) = X ) |
| 43 |
30 42
|
eqtrd |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( G ` ( X .+ ( `' G ` .0. ) ) ) = X ) |
| 44 |
24 27 43
|
3eqtr4rd |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( G ` ( X .+ ( `' G ` .0. ) ) ) = ( G ` .0. ) ) |
| 45 |
|
f1fveq |
|- ( ( G : B -1-1-> B /\ ( ( X .+ ( `' G ` .0. ) ) e. B /\ .0. e. B ) ) -> ( ( G ` ( X .+ ( `' G ` .0. ) ) ) = ( G ` .0. ) <-> ( X .+ ( `' G ` .0. ) ) = .0. ) ) |
| 46 |
45
|
biimpa |
|- ( ( ( G : B -1-1-> B /\ ( ( X .+ ( `' G ` .0. ) ) e. B /\ .0. e. B ) ) /\ ( G ` ( X .+ ( `' G ` .0. ) ) ) = ( G ` .0. ) ) -> ( X .+ ( `' G ` .0. ) ) = .0. ) |
| 47 |
18 22 44 46
|
syl21anc |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( X .+ ( `' G ` .0. ) ) = .0. ) |
| 48 |
8 16 47
|
rspcedvdw |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> E. v e. B ( X .+ v ) = .0. ) |
| 49 |
|
f1ofo |
|- ( G : B -1-1-onto-> B -> G : B -onto-> B ) |
| 50 |
1 2 3 4 5 6
|
mndractfo |
|- ( ph -> ( G : B -onto-> B <-> E. w e. B ( w .+ X ) = .0. ) ) |
| 51 |
50
|
biimpa |
|- ( ( ph /\ G : B -onto-> B ) -> E. w e. B ( w .+ X ) = .0. ) |
| 52 |
49 51
|
sylan2 |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> E. w e. B ( w .+ X ) = .0. ) |
| 53 |
48 52
|
jca |
|- ( ( ph /\ G : B -1-1-onto-> B ) -> ( E. v e. B ( X .+ v ) = .0. /\ E. w e. B ( w .+ X ) = .0. ) ) |
| 54 |
5
|
ad2antrr |
|- ( ( ( ph /\ v e. B ) /\ ( X .+ v ) = .0. ) -> E e. Mnd ) |
| 55 |
6
|
ad2antrr |
|- ( ( ( ph /\ v e. B ) /\ ( X .+ v ) = .0. ) -> X e. B ) |
| 56 |
|
simplr |
|- ( ( ( ph /\ v e. B ) /\ ( X .+ v ) = .0. ) -> v e. B ) |
| 57 |
|
simpr |
|- ( ( ( ph /\ v e. B ) /\ ( X .+ v ) = .0. ) -> ( X .+ v ) = .0. ) |
| 58 |
1 2 3 4 54 55 56 57
|
mndractf1 |
|- ( ( ( ph /\ v e. B ) /\ ( X .+ v ) = .0. ) -> G : B -1-1-> B ) |
| 59 |
58
|
r19.29an |
|- ( ( ph /\ E. v e. B ( X .+ v ) = .0. ) -> G : B -1-1-> B ) |
| 60 |
50
|
biimpar |
|- ( ( ph /\ E. w e. B ( w .+ X ) = .0. ) -> G : B -onto-> B ) |
| 61 |
59 60
|
anim12dan |
|- ( ( ph /\ ( E. v e. B ( X .+ v ) = .0. /\ E. w e. B ( w .+ X ) = .0. ) ) -> ( G : B -1-1-> B /\ G : B -onto-> B ) ) |
| 62 |
|
df-f1o |
|- ( G : B -1-1-onto-> B <-> ( G : B -1-1-> B /\ G : B -onto-> B ) ) |
| 63 |
61 62
|
sylibr |
|- ( ( ph /\ ( E. v e. B ( X .+ v ) = .0. /\ E. w e. B ( w .+ X ) = .0. ) ) -> G : B -1-1-onto-> B ) |
| 64 |
53 63
|
impbida |
|- ( ph -> ( G : B -1-1-onto-> B <-> ( E. v e. B ( X .+ v ) = .0. /\ E. w e. B ( w .+ X ) = .0. ) ) ) |
| 65 |
1 2 3 5 6
|
mndlrinvb |
|- ( ph -> ( ( E. v e. B ( X .+ v ) = .0. /\ E. w e. B ( w .+ X ) = .0. ) <-> E. y e. B ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) ) |
| 66 |
64 65
|
bitrd |
|- ( ph -> ( G : B -1-1-onto-> B <-> E. y e. B ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) ) |