Step |
Hyp |
Ref |
Expression |
1 |
|
mndractf1o.b |
|
2 |
|
mndractf1o.z |
|
3 |
|
mndractf1o.p |
|
4 |
|
mndractf1o.f |
|
5 |
|
mndractf1o.e |
|
6 |
|
mndractf1o.x |
|
7 |
|
oveq2 |
|
8 |
7
|
eqeq1d |
|
9 |
|
f1ocnv |
|
10 |
|
f1of |
|
11 |
9 10
|
syl |
|
12 |
11
|
adantl |
|
13 |
1 2
|
mndidcl |
|
14 |
5 13
|
syl |
|
15 |
14
|
adantr |
|
16 |
12 15
|
ffvelcdmd |
|
17 |
|
f1of1 |
|
18 |
17
|
adantl |
|
19 |
5
|
adantr |
|
20 |
6
|
adantr |
|
21 |
1 3 19 20 16
|
mndcld |
|
22 |
21 15
|
jca |
|
23 |
1 3 2
|
mndlid |
|
24 |
19 20 23
|
syl2anc |
|
25 |
|
oveq1 |
|
26 |
|
ovexd |
|
27 |
4 25 15 26
|
fvmptd3 |
|
28 |
|
oveq1 |
|
29 |
|
ovexd |
|
30 |
4 28 21 29
|
fvmptd3 |
|
31 |
1 3 19 20 16 20
|
mndassd |
|
32 |
|
oveq1 |
|
33 |
|
ovexd |
|
34 |
4 32 16 33
|
fvmptd3 |
|
35 |
|
simpr |
|
36 |
|
f1ocnvfv2 |
|
37 |
35 15 36
|
syl2anc |
|
38 |
34 37
|
eqtr3d |
|
39 |
38
|
oveq2d |
|
40 |
1 3 2
|
mndrid |
|
41 |
19 20 40
|
syl2anc |
|
42 |
31 39 41
|
3eqtrd |
|
43 |
30 42
|
eqtrd |
|
44 |
24 27 43
|
3eqtr4rd |
|
45 |
|
f1fveq |
|
46 |
45
|
biimpa |
|
47 |
18 22 44 46
|
syl21anc |
|
48 |
8 16 47
|
rspcedvdw |
|
49 |
|
f1ofo |
|
50 |
1 2 3 4 5 6
|
mndractfo |
|
51 |
50
|
biimpa |
|
52 |
49 51
|
sylan2 |
|
53 |
48 52
|
jca |
|
54 |
5
|
ad2antrr |
|
55 |
6
|
ad2antrr |
|
56 |
|
simplr |
|
57 |
|
simpr |
|
58 |
1 2 3 4 54 55 56 57
|
mndractf1 |
|
59 |
58
|
r19.29an |
|
60 |
50
|
biimpar |
|
61 |
59 60
|
anim12dan |
|
62 |
|
df-f1o |
|
63 |
61 62
|
sylibr |
|
64 |
53 63
|
impbida |
|
65 |
1 2 3 5 6
|
mndlrinvb |
|
66 |
64 65
|
bitrd |
|