Step |
Hyp |
Ref |
Expression |
1 |
|
mndractf1o.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
2 |
|
mndractf1o.z |
⊢ 0 = ( 0g ‘ 𝐸 ) |
3 |
|
mndractf1o.p |
⊢ + = ( +g ‘ 𝐸 ) |
4 |
|
mndractf1o.f |
⊢ 𝐺 = ( 𝑎 ∈ 𝐵 ↦ ( 𝑎 + 𝑋 ) ) |
5 |
|
mndractf1o.e |
⊢ ( 𝜑 → 𝐸 ∈ Mnd ) |
6 |
|
mndractf1o.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
oveq2 |
⊢ ( 𝑣 = ( ◡ 𝐺 ‘ 0 ) → ( 𝑋 + 𝑣 ) = ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑣 = ( ◡ 𝐺 ‘ 0 ) → ( ( 𝑋 + 𝑣 ) = 0 ↔ ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) = 0 ) ) |
9 |
|
f1ocnv |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐵 → ◡ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) |
10 |
|
f1of |
⊢ ( ◡ 𝐺 : 𝐵 –1-1-onto→ 𝐵 → ◡ 𝐺 : 𝐵 ⟶ 𝐵 ) |
11 |
9 10
|
syl |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐵 → ◡ 𝐺 : 𝐵 ⟶ 𝐵 ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ◡ 𝐺 : 𝐵 ⟶ 𝐵 ) |
13 |
1 2
|
mndidcl |
⊢ ( 𝐸 ∈ Mnd → 0 ∈ 𝐵 ) |
14 |
5 13
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → 0 ∈ 𝐵 ) |
16 |
12 15
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( ◡ 𝐺 ‘ 0 ) ∈ 𝐵 ) |
17 |
|
f1of1 |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐵 → 𝐺 : 𝐵 –1-1→ 𝐵 ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → 𝐺 : 𝐵 –1-1→ 𝐵 ) |
19 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → 𝐸 ∈ Mnd ) |
20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
21 |
1 3 19 20 16
|
mndcld |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) ∈ 𝐵 ) |
22 |
21 15
|
jca |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) ∈ 𝐵 ∧ 0 ∈ 𝐵 ) ) |
23 |
1 3 2
|
mndlid |
⊢ ( ( 𝐸 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( 0 + 𝑋 ) = 𝑋 ) |
24 |
19 20 23
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( 0 + 𝑋 ) = 𝑋 ) |
25 |
|
oveq1 |
⊢ ( 𝑎 = 0 → ( 𝑎 + 𝑋 ) = ( 0 + 𝑋 ) ) |
26 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( 0 + 𝑋 ) ∈ V ) |
27 |
4 25 15 26
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝐺 ‘ 0 ) = ( 0 + 𝑋 ) ) |
28 |
|
oveq1 |
⊢ ( 𝑎 = ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) → ( 𝑎 + 𝑋 ) = ( ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) + 𝑋 ) ) |
29 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) + 𝑋 ) ∈ V ) |
30 |
4 28 21 29
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝐺 ‘ ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) ) = ( ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) + 𝑋 ) ) |
31 |
1 3 19 20 16 20
|
mndassd |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) + 𝑋 ) = ( 𝑋 + ( ( ◡ 𝐺 ‘ 0 ) + 𝑋 ) ) ) |
32 |
|
oveq1 |
⊢ ( 𝑎 = ( ◡ 𝐺 ‘ 0 ) → ( 𝑎 + 𝑋 ) = ( ( ◡ 𝐺 ‘ 0 ) + 𝑋 ) ) |
33 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( ( ◡ 𝐺 ‘ 0 ) + 𝑋 ) ∈ V ) |
34 |
4 32 16 33
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 0 ) ) = ( ( ◡ 𝐺 ‘ 0 ) + 𝑋 ) ) |
35 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) |
36 |
|
f1ocnvfv2 |
⊢ ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐵 ∧ 0 ∈ 𝐵 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 0 ) ) = 0 ) |
37 |
35 15 36
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 0 ) ) = 0 ) |
38 |
34 37
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( ( ◡ 𝐺 ‘ 0 ) + 𝑋 ) = 0 ) |
39 |
38
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝑋 + ( ( ◡ 𝐺 ‘ 0 ) + 𝑋 ) ) = ( 𝑋 + 0 ) ) |
40 |
1 3 2
|
mndrid |
⊢ ( ( 𝐸 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + 0 ) = 𝑋 ) |
41 |
19 20 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝑋 + 0 ) = 𝑋 ) |
42 |
31 39 41
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) + 𝑋 ) = 𝑋 ) |
43 |
30 42
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝐺 ‘ ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) ) = 𝑋 ) |
44 |
24 27 43
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝐺 ‘ ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) ) = ( 𝐺 ‘ 0 ) ) |
45 |
|
f1fveq |
⊢ ( ( 𝐺 : 𝐵 –1-1→ 𝐵 ∧ ( ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) ∈ 𝐵 ∧ 0 ∈ 𝐵 ) ) → ( ( 𝐺 ‘ ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) ) = ( 𝐺 ‘ 0 ) ↔ ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) = 0 ) ) |
46 |
45
|
biimpa |
⊢ ( ( ( 𝐺 : 𝐵 –1-1→ 𝐵 ∧ ( ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) ∈ 𝐵 ∧ 0 ∈ 𝐵 ) ) ∧ ( 𝐺 ‘ ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) ) = ( 𝐺 ‘ 0 ) ) → ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) = 0 ) |
47 |
18 22 44 46
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( 𝑋 + ( ◡ 𝐺 ‘ 0 ) ) = 0 ) |
48 |
8 16 47
|
rspcedvdw |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ∃ 𝑣 ∈ 𝐵 ( 𝑋 + 𝑣 ) = 0 ) |
49 |
|
f1ofo |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐵 → 𝐺 : 𝐵 –onto→ 𝐵 ) |
50 |
1 2 3 4 5 6
|
mndractfo |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 –onto→ 𝐵 ↔ ∃ 𝑤 ∈ 𝐵 ( 𝑤 + 𝑋 ) = 0 ) ) |
51 |
50
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –onto→ 𝐵 ) → ∃ 𝑤 ∈ 𝐵 ( 𝑤 + 𝑋 ) = 0 ) |
52 |
49 51
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ∃ 𝑤 ∈ 𝐵 ( 𝑤 + 𝑋 ) = 0 ) |
53 |
48 52
|
jca |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) → ( ∃ 𝑣 ∈ 𝐵 ( 𝑋 + 𝑣 ) = 0 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝑤 + 𝑋 ) = 0 ) ) |
54 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑣 ) = 0 ) → 𝐸 ∈ Mnd ) |
55 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑣 ) = 0 ) → 𝑋 ∈ 𝐵 ) |
56 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑣 ) = 0 ) → 𝑣 ∈ 𝐵 ) |
57 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑣 ) = 0 ) → ( 𝑋 + 𝑣 ) = 0 ) |
58 |
1 2 3 4 54 55 56 57
|
mndractf1 |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑣 ) = 0 ) → 𝐺 : 𝐵 –1-1→ 𝐵 ) |
59 |
58
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑣 ∈ 𝐵 ( 𝑋 + 𝑣 ) = 0 ) → 𝐺 : 𝐵 –1-1→ 𝐵 ) |
60 |
50
|
biimpar |
⊢ ( ( 𝜑 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝑤 + 𝑋 ) = 0 ) → 𝐺 : 𝐵 –onto→ 𝐵 ) |
61 |
59 60
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( ∃ 𝑣 ∈ 𝐵 ( 𝑋 + 𝑣 ) = 0 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝑤 + 𝑋 ) = 0 ) ) → ( 𝐺 : 𝐵 –1-1→ 𝐵 ∧ 𝐺 : 𝐵 –onto→ 𝐵 ) ) |
62 |
|
df-f1o |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐵 ↔ ( 𝐺 : 𝐵 –1-1→ 𝐵 ∧ 𝐺 : 𝐵 –onto→ 𝐵 ) ) |
63 |
61 62
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ∃ 𝑣 ∈ 𝐵 ( 𝑋 + 𝑣 ) = 0 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝑤 + 𝑋 ) = 0 ) ) → 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) |
64 |
53 63
|
impbida |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 –1-1-onto→ 𝐵 ↔ ( ∃ 𝑣 ∈ 𝐵 ( 𝑋 + 𝑣 ) = 0 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝑤 + 𝑋 ) = 0 ) ) ) |
65 |
1 2 3 5 6
|
mndlrinvb |
⊢ ( 𝜑 → ( ( ∃ 𝑣 ∈ 𝐵 ( 𝑋 + 𝑣 ) = 0 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝑤 + 𝑋 ) = 0 ) ↔ ∃ 𝑦 ∈ 𝐵 ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) ) |
66 |
64 65
|
bitrd |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 –1-1-onto→ 𝐵 ↔ ∃ 𝑦 ∈ 𝐵 ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) ) |