| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mndractfo.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
| 2 |
|
mndractfo.z |
⊢ 0 = ( 0g ‘ 𝐸 ) |
| 3 |
|
mndractfo.p |
⊢ + = ( +g ‘ 𝐸 ) |
| 4 |
|
mndractfo.f |
⊢ 𝐺 = ( 𝑎 ∈ 𝐵 ↦ ( 𝑎 + 𝑋 ) ) |
| 5 |
|
mndractfo.e |
⊢ ( 𝜑 → 𝐸 ∈ Mnd ) |
| 6 |
|
mndractfo.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –onto→ 𝐵 ) → 𝐺 : 𝐵 –onto→ 𝐵 ) |
| 8 |
1 2
|
mndidcl |
⊢ ( 𝐸 ∈ Mnd → 0 ∈ 𝐵 ) |
| 9 |
5 8
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –onto→ 𝐵 ) → 0 ∈ 𝐵 ) |
| 11 |
|
foelcdmi |
⊢ ( ( 𝐺 : 𝐵 –onto→ 𝐵 ∧ 0 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝐺 ‘ 𝑦 ) = 0 ) |
| 12 |
7 10 11
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –onto→ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝐺 ‘ 𝑦 ) = 0 ) |
| 13 |
|
oveq1 |
⊢ ( 𝑎 = 𝑦 → ( 𝑎 + 𝑋 ) = ( 𝑦 + 𝑋 ) ) |
| 14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐺 : 𝐵 –onto→ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 15 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝐺 : 𝐵 –onto→ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 + 𝑋 ) ∈ V ) |
| 16 |
4 13 14 15
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝐺 : 𝐵 –onto→ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝑦 + 𝑋 ) ) |
| 17 |
16
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝐺 : 𝐵 –onto→ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐺 ‘ 𝑦 ) = 0 ↔ ( 𝑦 + 𝑋 ) = 0 ) ) |
| 18 |
17
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝐺 : 𝐵 –onto→ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐺 ‘ 𝑦 ) = 0 → ( 𝑦 + 𝑋 ) = 0 ) ) |
| 19 |
18
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –onto→ 𝐵 ) → ( ∃ 𝑦 ∈ 𝐵 ( 𝐺 ‘ 𝑦 ) = 0 → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) ) |
| 20 |
12 19
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝐵 –onto→ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) |
| 21 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝐸 ∈ Mnd ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) |
| 23 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 24 |
1 3 21 22 23
|
mndcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 + 𝑋 ) ∈ 𝐵 ) |
| 25 |
24 4
|
fmptd |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐵 ) |
| 26 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 + 𝑋 ) = 0 ) → 𝐺 : 𝐵 ⟶ 𝐵 ) |
| 27 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑧 + 𝑦 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝑧 + 𝑦 ) ) ) |
| 28 |
27
|
eqeq2d |
⊢ ( 𝑥 = ( 𝑧 + 𝑦 ) → ( 𝑧 = ( 𝐺 ‘ 𝑥 ) ↔ 𝑧 = ( 𝐺 ‘ ( 𝑧 + 𝑦 ) ) ) ) |
| 29 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 + 𝑋 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → 𝐸 ∈ Mnd ) |
| 30 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 + 𝑋 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
| 31 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 + 𝑋 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 32 |
1 3 29 30 31
|
mndcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 + 𝑋 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 + 𝑦 ) ∈ 𝐵 ) |
| 33 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 + 𝑋 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 34 |
1 3 29 30 31 33
|
mndassd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 + 𝑋 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑧 + 𝑦 ) + 𝑋 ) = ( 𝑧 + ( 𝑦 + 𝑋 ) ) ) |
| 35 |
|
oveq1 |
⊢ ( 𝑎 = ( 𝑧 + 𝑦 ) → ( 𝑎 + 𝑋 ) = ( ( 𝑧 + 𝑦 ) + 𝑋 ) ) |
| 36 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 + 𝑋 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑧 + 𝑦 ) + 𝑋 ) ∈ V ) |
| 37 |
4 35 32 36
|
fvmptd3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 + 𝑋 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐺 ‘ ( 𝑧 + 𝑦 ) ) = ( ( 𝑧 + 𝑦 ) + 𝑋 ) ) |
| 38 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 + 𝑋 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 + 𝑋 ) = 0 ) |
| 39 |
38
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 + 𝑋 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 + ( 𝑦 + 𝑋 ) ) = ( 𝑧 + 0 ) ) |
| 40 |
1 3 2
|
mndrid |
⊢ ( ( 𝐸 ∈ Mnd ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 + 0 ) = 𝑧 ) |
| 41 |
29 30 40
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 + 𝑋 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 + 0 ) = 𝑧 ) |
| 42 |
39 41
|
eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 + 𝑋 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 = ( 𝑧 + ( 𝑦 + 𝑋 ) ) ) |
| 43 |
34 37 42
|
3eqtr4rd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 + 𝑋 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 = ( 𝐺 ‘ ( 𝑧 + 𝑦 ) ) ) |
| 44 |
28 32 43
|
rspcedvdw |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 + 𝑋 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐵 𝑧 = ( 𝐺 ‘ 𝑥 ) ) |
| 45 |
44
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 + 𝑋 ) = 0 ) → ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 𝑧 = ( 𝐺 ‘ 𝑥 ) ) |
| 46 |
|
dffo3 |
⊢ ( 𝐺 : 𝐵 –onto→ 𝐵 ↔ ( 𝐺 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 𝑧 = ( 𝐺 ‘ 𝑥 ) ) ) |
| 47 |
26 45 46
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 + 𝑋 ) = 0 ) → 𝐺 : 𝐵 –onto→ 𝐵 ) |
| 48 |
47
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) → 𝐺 : 𝐵 –onto→ 𝐵 ) |
| 49 |
20 48
|
impbida |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 –onto→ 𝐵 ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) ) |