| Step |
Hyp |
Ref |
Expression |
| 1 |
|
assarrginv.1 |
|- E = ( RLReg ` A ) |
| 2 |
|
assarrginv.2 |
|- U = ( Unit ` A ) |
| 3 |
|
assarrginv.3 |
|- K = ( Scalar ` A ) |
| 4 |
|
assarrginv.4 |
|- ( ph -> A e. AssAlg ) |
| 5 |
|
assarrginv.5 |
|- ( ph -> K e. DivRing ) |
| 6 |
|
assarrginv.6 |
|- ( ph -> ( dim ` A ) e. NN0 ) |
| 7 |
|
assarrginv.7 |
|- ( ph -> X e. E ) |
| 8 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 9 |
|
eqid |
|- ( .r ` A ) = ( .r ` A ) |
| 10 |
|
eqid |
|- ( a e. ( Base ` A ) |-> ( X ( .r ` A ) a ) ) = ( a e. ( Base ` A ) |-> ( X ( .r ` A ) a ) ) |
| 11 |
8 9 10 4 1 3 5 6 7
|
assalactf1o |
|- ( ph -> ( a e. ( Base ` A ) |-> ( X ( .r ` A ) a ) ) : ( Base ` A ) -1-1-onto-> ( Base ` A ) ) |
| 12 |
|
eqid |
|- ( mulGrp ` A ) = ( mulGrp ` A ) |
| 13 |
12 8
|
mgpbas |
|- ( Base ` A ) = ( Base ` ( mulGrp ` A ) ) |
| 14 |
|
eqid |
|- ( 1r ` A ) = ( 1r ` A ) |
| 15 |
12 14
|
ringidval |
|- ( 1r ` A ) = ( 0g ` ( mulGrp ` A ) ) |
| 16 |
12 9
|
mgpplusg |
|- ( .r ` A ) = ( +g ` ( mulGrp ` A ) ) |
| 17 |
|
oveq2 |
|- ( a = b -> ( X ( .r ` A ) a ) = ( X ( .r ` A ) b ) ) |
| 18 |
17
|
cbvmptv |
|- ( a e. ( Base ` A ) |-> ( X ( .r ` A ) a ) ) = ( b e. ( Base ` A ) |-> ( X ( .r ` A ) b ) ) |
| 19 |
|
assaring |
|- ( A e. AssAlg -> A e. Ring ) |
| 20 |
4 19
|
syl |
|- ( ph -> A e. Ring ) |
| 21 |
12
|
ringmgp |
|- ( A e. Ring -> ( mulGrp ` A ) e. Mnd ) |
| 22 |
20 21
|
syl |
|- ( ph -> ( mulGrp ` A ) e. Mnd ) |
| 23 |
1 8
|
rrgss |
|- E C_ ( Base ` A ) |
| 24 |
23 7
|
sselid |
|- ( ph -> X e. ( Base ` A ) ) |
| 25 |
13 15 16 18 22 24
|
mndlactf1o |
|- ( ph -> ( ( a e. ( Base ` A ) |-> ( X ( .r ` A ) a ) ) : ( Base ` A ) -1-1-onto-> ( Base ` A ) <-> E. z e. ( Base ` A ) ( ( X ( .r ` A ) z ) = ( 1r ` A ) /\ ( z ( .r ` A ) X ) = ( 1r ` A ) ) ) ) |
| 26 |
11 25
|
mpbid |
|- ( ph -> E. z e. ( Base ` A ) ( ( X ( .r ` A ) z ) = ( 1r ` A ) /\ ( z ( .r ` A ) X ) = ( 1r ` A ) ) ) |
| 27 |
8 2 9 14 24 20
|
isunit3 |
|- ( ph -> ( X e. U <-> E. z e. ( Base ` A ) ( ( X ( .r ` A ) z ) = ( 1r ` A ) /\ ( z ( .r ` A ) X ) = ( 1r ` A ) ) ) ) |
| 28 |
26 27
|
mpbird |
|- ( ph -> X e. U ) |