Step |
Hyp |
Ref |
Expression |
1 |
|
lactlmhm.b |
|
2 |
|
lactlmhm.m |
|
3 |
|
lactlmhm.f |
|
4 |
|
lactlmhm.a |
|
5 |
|
lactlmhm.c |
|
6 |
|
assalmod |
|
7 |
4 6
|
syl |
|
8 |
|
assaring |
|
9 |
4 8
|
syl |
|
10 |
1 2
|
ringlghm |
|
11 |
9 5 10
|
syl2anc |
|
12 |
3 11
|
eqeltrid |
|
13 |
|
eqidd |
|
14 |
4
|
ad2antrr |
|
15 |
|
simplr |
|
16 |
5
|
ad2antrr |
|
17 |
|
simpr |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
1 18 19 20 2
|
assaassr |
|
22 |
14 15 16 17 21
|
syl13anc |
|
23 |
|
oveq2 |
|
24 |
7
|
ad2antrr |
|
25 |
1 18 20 19 24 15 17
|
lmodvscld |
|
26 |
|
ovexd |
|
27 |
3 23 25 26
|
fvmptd3 |
|
28 |
|
oveq2 |
|
29 |
|
ovexd |
|
30 |
3 28 17 29
|
fvmptd3 |
|
31 |
30
|
oveq2d |
|
32 |
22 27 31
|
3eqtr4d |
|
33 |
32
|
anasss |
|
34 |
33
|
ralrimivva |
|
35 |
18 18 19 1 20 20
|
islmhm |
|
36 |
35
|
biimpri |
|
37 |
7 7 12 13 34 36
|
syl23anc |
|