Metamath Proof Explorer


Theorem lactlmhm

Description: In an associative algebra A , left-multiplication by a fixed element of the algebra is a module homomorphism, analogous to ringlghm . (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses lactlmhm.b B = Base A
lactlmhm.m · ˙ = A
lactlmhm.f F = x B C · ˙ x
lactlmhm.a φ A AssAlg
lactlmhm.c φ C B
Assertion lactlmhm φ F A LMHom A

Proof

Step Hyp Ref Expression
1 lactlmhm.b B = Base A
2 lactlmhm.m · ˙ = A
3 lactlmhm.f F = x B C · ˙ x
4 lactlmhm.a φ A AssAlg
5 lactlmhm.c φ C B
6 assalmod A AssAlg A LMod
7 4 6 syl φ A LMod
8 assaring A AssAlg A Ring
9 4 8 syl φ A Ring
10 1 2 ringlghm A Ring C B x B C · ˙ x A GrpHom A
11 9 5 10 syl2anc φ x B C · ˙ x A GrpHom A
12 3 11 eqeltrid φ F A GrpHom A
13 eqidd φ Scalar A = Scalar A
14 4 ad2antrr φ a Base Scalar A b B A AssAlg
15 simplr φ a Base Scalar A b B a Base Scalar A
16 5 ad2antrr φ a Base Scalar A b B C B
17 simpr φ a Base Scalar A b B b B
18 eqid Scalar A = Scalar A
19 eqid Base Scalar A = Base Scalar A
20 eqid A = A
21 1 18 19 20 2 assaassr A AssAlg a Base Scalar A C B b B C · ˙ a A b = a A C · ˙ b
22 14 15 16 17 21 syl13anc φ a Base Scalar A b B C · ˙ a A b = a A C · ˙ b
23 oveq2 x = a A b C · ˙ x = C · ˙ a A b
24 7 ad2antrr φ a Base Scalar A b B A LMod
25 1 18 20 19 24 15 17 lmodvscld φ a Base Scalar A b B a A b B
26 ovexd φ a Base Scalar A b B C · ˙ a A b V
27 3 23 25 26 fvmptd3 φ a Base Scalar A b B F a A b = C · ˙ a A b
28 oveq2 x = b C · ˙ x = C · ˙ b
29 ovexd φ a Base Scalar A b B C · ˙ b V
30 3 28 17 29 fvmptd3 φ a Base Scalar A b B F b = C · ˙ b
31 30 oveq2d φ a Base Scalar A b B a A F b = a A C · ˙ b
32 22 27 31 3eqtr4d φ a Base Scalar A b B F a A b = a A F b
33 32 anasss φ a Base Scalar A b B F a A b = a A F b
34 33 ralrimivva φ a Base Scalar A b B F a A b = a A F b
35 18 18 19 1 20 20 islmhm F A LMHom A A LMod A LMod F A GrpHom A Scalar A = Scalar A a Base Scalar A b B F a A b = a A F b
36 35 biimpri A LMod A LMod F A GrpHom A Scalar A = Scalar A a Base Scalar A b B F a A b = a A F b F A LMHom A
37 7 7 12 13 34 36 syl23anc φ F A LMHom A