| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ballotth.m |
|- M e. NN |
| 2 |
|
ballotth.n |
|- N e. NN |
| 3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
| 4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
| 5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
| 6 |
|
ballotth.e |
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } |
| 7 |
|
nnaddcl |
|- ( ( M e. NN /\ N e. NN ) -> ( M + N ) e. NN ) |
| 8 |
1 2 7
|
mp2an |
|- ( M + N ) e. NN |
| 9 |
|
elnnuz |
|- ( ( M + N ) e. NN <-> ( M + N ) e. ( ZZ>= ` 1 ) ) |
| 10 |
8 9
|
mpbi |
|- ( M + N ) e. ( ZZ>= ` 1 ) |
| 11 |
|
eluzfz1 |
|- ( ( M + N ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( M + N ) ) ) |
| 12 |
10 11
|
ax-mp |
|- 1 e. ( 1 ... ( M + N ) ) |
| 13 |
|
0le1 |
|- 0 <_ 1 |
| 14 |
|
0re |
|- 0 e. RR |
| 15 |
|
1re |
|- 1 e. RR |
| 16 |
14 15
|
lenlti |
|- ( 0 <_ 1 <-> -. 1 < 0 ) |
| 17 |
13 16
|
mpbi |
|- -. 1 < 0 |
| 18 |
|
ltsub13 |
|- ( ( 0 e. RR /\ 0 e. RR /\ 1 e. RR ) -> ( 0 < ( 0 - 1 ) <-> 1 < ( 0 - 0 ) ) ) |
| 19 |
14 14 15 18
|
mp3an |
|- ( 0 < ( 0 - 1 ) <-> 1 < ( 0 - 0 ) ) |
| 20 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 21 |
20
|
breq2i |
|- ( 1 < ( 0 - 0 ) <-> 1 < 0 ) |
| 22 |
19 21
|
bitri |
|- ( 0 < ( 0 - 1 ) <-> 1 < 0 ) |
| 23 |
17 22
|
mtbir |
|- -. 0 < ( 0 - 1 ) |
| 24 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 25 |
24
|
fveq2i |
|- ( ( F ` C ) ` ( 1 - 1 ) ) = ( ( F ` C ) ` 0 ) |
| 26 |
1 2 3 4 5
|
ballotlemfval0 |
|- ( C e. O -> ( ( F ` C ) ` 0 ) = 0 ) |
| 27 |
25 26
|
eqtrid |
|- ( C e. O -> ( ( F ` C ) ` ( 1 - 1 ) ) = 0 ) |
| 28 |
27
|
oveq1d |
|- ( C e. O -> ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) = ( 0 - 1 ) ) |
| 29 |
28
|
breq2d |
|- ( C e. O -> ( 0 < ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) <-> 0 < ( 0 - 1 ) ) ) |
| 30 |
23 29
|
mtbiri |
|- ( C e. O -> -. 0 < ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) ) |
| 31 |
30
|
adantr |
|- ( ( C e. O /\ -. 1 e. C ) -> -. 0 < ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) ) |
| 32 |
|
simpl |
|- ( ( C e. O /\ 1 e. ( 1 ... ( M + N ) ) ) -> C e. O ) |
| 33 |
|
1nn |
|- 1 e. NN |
| 34 |
33
|
a1i |
|- ( ( C e. O /\ 1 e. ( 1 ... ( M + N ) ) ) -> 1 e. NN ) |
| 35 |
1 2 3 4 5 32 34
|
ballotlemfp1 |
|- ( ( C e. O /\ 1 e. ( 1 ... ( M + N ) ) ) -> ( ( -. 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) ) /\ ( 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) + 1 ) ) ) ) |
| 36 |
35
|
simpld |
|- ( ( C e. O /\ 1 e. ( 1 ... ( M + N ) ) ) -> ( -. 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) ) ) |
| 37 |
12 36
|
mpan2 |
|- ( C e. O -> ( -. 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) ) ) |
| 38 |
37
|
imp |
|- ( ( C e. O /\ -. 1 e. C ) -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) ) |
| 39 |
38
|
breq2d |
|- ( ( C e. O /\ -. 1 e. C ) -> ( 0 < ( ( F ` C ) ` 1 ) <-> 0 < ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) ) ) |
| 40 |
31 39
|
mtbird |
|- ( ( C e. O /\ -. 1 e. C ) -> -. 0 < ( ( F ` C ) ` 1 ) ) |
| 41 |
|
fveq2 |
|- ( i = 1 -> ( ( F ` C ) ` i ) = ( ( F ` C ) ` 1 ) ) |
| 42 |
41
|
breq2d |
|- ( i = 1 -> ( 0 < ( ( F ` C ) ` i ) <-> 0 < ( ( F ` C ) ` 1 ) ) ) |
| 43 |
42
|
notbid |
|- ( i = 1 -> ( -. 0 < ( ( F ` C ) ` i ) <-> -. 0 < ( ( F ` C ) ` 1 ) ) ) |
| 44 |
43
|
rspcev |
|- ( ( 1 e. ( 1 ... ( M + N ) ) /\ -. 0 < ( ( F ` C ) ` 1 ) ) -> E. i e. ( 1 ... ( M + N ) ) -. 0 < ( ( F ` C ) ` i ) ) |
| 45 |
12 40 44
|
sylancr |
|- ( ( C e. O /\ -. 1 e. C ) -> E. i e. ( 1 ... ( M + N ) ) -. 0 < ( ( F ` C ) ` i ) ) |
| 46 |
|
rexnal |
|- ( E. i e. ( 1 ... ( M + N ) ) -. 0 < ( ( F ` C ) ` i ) <-> -. A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` C ) ` i ) ) |
| 47 |
45 46
|
sylib |
|- ( ( C e. O /\ -. 1 e. C ) -> -. A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` C ) ` i ) ) |
| 48 |
1 2 3 4 5 6
|
ballotleme |
|- ( C e. E <-> ( C e. O /\ A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` C ) ` i ) ) ) |
| 49 |
48
|
simprbi |
|- ( C e. E -> A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` C ) ` i ) ) |
| 50 |
47 49
|
nsyl |
|- ( ( C e. O /\ -. 1 e. C ) -> -. C e. E ) |
| 51 |
50
|
ex |
|- ( C e. O -> ( -. 1 e. C -> -. C e. E ) ) |