Step |
Hyp |
Ref |
Expression |
1 |
|
bj-bary1.a |
|- ( ph -> A e. CC ) |
2 |
|
bj-bary1.b |
|- ( ph -> B e. CC ) |
3 |
|
bj-bary1.x |
|- ( ph -> X e. CC ) |
4 |
|
bj-bary1.neq |
|- ( ph -> A =/= B ) |
5 |
2 1
|
mulcld |
|- ( ph -> ( B x. A ) e. CC ) |
6 |
3 1
|
mulcld |
|- ( ph -> ( X x. A ) e. CC ) |
7 |
5 6
|
subcld |
|- ( ph -> ( ( B x. A ) - ( X x. A ) ) e. CC ) |
8 |
3 2
|
mulcld |
|- ( ph -> ( X x. B ) e. CC ) |
9 |
1 2
|
mulcld |
|- ( ph -> ( A x. B ) e. CC ) |
10 |
7 8 9
|
addsub12d |
|- ( ph -> ( ( ( B x. A ) - ( X x. A ) ) + ( ( X x. B ) - ( A x. B ) ) ) = ( ( X x. B ) + ( ( ( B x. A ) - ( X x. A ) ) - ( A x. B ) ) ) ) |
11 |
5 6 9
|
sub32d |
|- ( ph -> ( ( ( B x. A ) - ( X x. A ) ) - ( A x. B ) ) = ( ( ( B x. A ) - ( A x. B ) ) - ( X x. A ) ) ) |
12 |
2 1
|
bj-subcom |
|- ( ph -> ( ( B x. A ) - ( A x. B ) ) = 0 ) |
13 |
12
|
oveq1d |
|- ( ph -> ( ( ( B x. A ) - ( A x. B ) ) - ( X x. A ) ) = ( 0 - ( X x. A ) ) ) |
14 |
11 13
|
eqtrd |
|- ( ph -> ( ( ( B x. A ) - ( X x. A ) ) - ( A x. B ) ) = ( 0 - ( X x. A ) ) ) |
15 |
14
|
oveq2d |
|- ( ph -> ( ( X x. B ) + ( ( ( B x. A ) - ( X x. A ) ) - ( A x. B ) ) ) = ( ( X x. B ) + ( 0 - ( X x. A ) ) ) ) |
16 |
10 15
|
eqtrd |
|- ( ph -> ( ( ( B x. A ) - ( X x. A ) ) + ( ( X x. B ) - ( A x. B ) ) ) = ( ( X x. B ) + ( 0 - ( X x. A ) ) ) ) |
17 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
18 |
8 17 6
|
addsubassd |
|- ( ph -> ( ( ( X x. B ) + 0 ) - ( X x. A ) ) = ( ( X x. B ) + ( 0 - ( X x. A ) ) ) ) |
19 |
8
|
addid1d |
|- ( ph -> ( ( X x. B ) + 0 ) = ( X x. B ) ) |
20 |
19
|
oveq1d |
|- ( ph -> ( ( ( X x. B ) + 0 ) - ( X x. A ) ) = ( ( X x. B ) - ( X x. A ) ) ) |
21 |
16 18 20
|
3eqtr2d |
|- ( ph -> ( ( ( B x. A ) - ( X x. A ) ) + ( ( X x. B ) - ( A x. B ) ) ) = ( ( X x. B ) - ( X x. A ) ) ) |
22 |
2 3 1
|
subdird |
|- ( ph -> ( ( B - X ) x. A ) = ( ( B x. A ) - ( X x. A ) ) ) |
23 |
3 1 2
|
subdird |
|- ( ph -> ( ( X - A ) x. B ) = ( ( X x. B ) - ( A x. B ) ) ) |
24 |
22 23
|
oveq12d |
|- ( ph -> ( ( ( B - X ) x. A ) + ( ( X - A ) x. B ) ) = ( ( ( B x. A ) - ( X x. A ) ) + ( ( X x. B ) - ( A x. B ) ) ) ) |
25 |
3 2 1
|
subdid |
|- ( ph -> ( X x. ( B - A ) ) = ( ( X x. B ) - ( X x. A ) ) ) |
26 |
21 24 25
|
3eqtr4rd |
|- ( ph -> ( X x. ( B - A ) ) = ( ( ( B - X ) x. A ) + ( ( X - A ) x. B ) ) ) |
27 |
26
|
oveq1d |
|- ( ph -> ( ( X x. ( B - A ) ) / ( B - A ) ) = ( ( ( ( B - X ) x. A ) + ( ( X - A ) x. B ) ) / ( B - A ) ) ) |
28 |
2 3
|
subcld |
|- ( ph -> ( B - X ) e. CC ) |
29 |
28 1
|
mulcld |
|- ( ph -> ( ( B - X ) x. A ) e. CC ) |
30 |
3 1
|
subcld |
|- ( ph -> ( X - A ) e. CC ) |
31 |
30 2
|
mulcld |
|- ( ph -> ( ( X - A ) x. B ) e. CC ) |
32 |
2 1
|
subcld |
|- ( ph -> ( B - A ) e. CC ) |
33 |
4
|
necomd |
|- ( ph -> B =/= A ) |
34 |
2 1 33
|
subne0d |
|- ( ph -> ( B - A ) =/= 0 ) |
35 |
29 31 32 34
|
divdird |
|- ( ph -> ( ( ( ( B - X ) x. A ) + ( ( X - A ) x. B ) ) / ( B - A ) ) = ( ( ( ( B - X ) x. A ) / ( B - A ) ) + ( ( ( X - A ) x. B ) / ( B - A ) ) ) ) |
36 |
27 35
|
eqtrd |
|- ( ph -> ( ( X x. ( B - A ) ) / ( B - A ) ) = ( ( ( ( B - X ) x. A ) / ( B - A ) ) + ( ( ( X - A ) x. B ) / ( B - A ) ) ) ) |
37 |
3 32 34
|
divcan4d |
|- ( ph -> ( ( X x. ( B - A ) ) / ( B - A ) ) = X ) |
38 |
28 1 32 34
|
div23d |
|- ( ph -> ( ( ( B - X ) x. A ) / ( B - A ) ) = ( ( ( B - X ) / ( B - A ) ) x. A ) ) |
39 |
30 2 32 34
|
div23d |
|- ( ph -> ( ( ( X - A ) x. B ) / ( B - A ) ) = ( ( ( X - A ) / ( B - A ) ) x. B ) ) |
40 |
38 39
|
oveq12d |
|- ( ph -> ( ( ( ( B - X ) x. A ) / ( B - A ) ) + ( ( ( X - A ) x. B ) / ( B - A ) ) ) = ( ( ( ( B - X ) / ( B - A ) ) x. A ) + ( ( ( X - A ) / ( B - A ) ) x. B ) ) ) |
41 |
36 37 40
|
3eqtr3d |
|- ( ph -> X = ( ( ( ( B - X ) / ( B - A ) ) x. A ) + ( ( ( X - A ) / ( B - A ) ) x. B ) ) ) |