| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-bary1.a |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | bj-bary1.b |  |-  ( ph -> B e. CC ) | 
						
							| 3 |  | bj-bary1.x |  |-  ( ph -> X e. CC ) | 
						
							| 4 |  | bj-bary1.neq |  |-  ( ph -> A =/= B ) | 
						
							| 5 | 2 1 | mulcld |  |-  ( ph -> ( B x. A ) e. CC ) | 
						
							| 6 | 3 1 | mulcld |  |-  ( ph -> ( X x. A ) e. CC ) | 
						
							| 7 | 5 6 | subcld |  |-  ( ph -> ( ( B x. A ) - ( X x. A ) ) e. CC ) | 
						
							| 8 | 3 2 | mulcld |  |-  ( ph -> ( X x. B ) e. CC ) | 
						
							| 9 | 1 2 | mulcld |  |-  ( ph -> ( A x. B ) e. CC ) | 
						
							| 10 | 7 8 9 | addsub12d |  |-  ( ph -> ( ( ( B x. A ) - ( X x. A ) ) + ( ( X x. B ) - ( A x. B ) ) ) = ( ( X x. B ) + ( ( ( B x. A ) - ( X x. A ) ) - ( A x. B ) ) ) ) | 
						
							| 11 | 5 6 9 | sub32d |  |-  ( ph -> ( ( ( B x. A ) - ( X x. A ) ) - ( A x. B ) ) = ( ( ( B x. A ) - ( A x. B ) ) - ( X x. A ) ) ) | 
						
							| 12 | 2 1 | bj-subcom |  |-  ( ph -> ( ( B x. A ) - ( A x. B ) ) = 0 ) | 
						
							| 13 | 12 | oveq1d |  |-  ( ph -> ( ( ( B x. A ) - ( A x. B ) ) - ( X x. A ) ) = ( 0 - ( X x. A ) ) ) | 
						
							| 14 | 11 13 | eqtrd |  |-  ( ph -> ( ( ( B x. A ) - ( X x. A ) ) - ( A x. B ) ) = ( 0 - ( X x. A ) ) ) | 
						
							| 15 | 14 | oveq2d |  |-  ( ph -> ( ( X x. B ) + ( ( ( B x. A ) - ( X x. A ) ) - ( A x. B ) ) ) = ( ( X x. B ) + ( 0 - ( X x. A ) ) ) ) | 
						
							| 16 | 10 15 | eqtrd |  |-  ( ph -> ( ( ( B x. A ) - ( X x. A ) ) + ( ( X x. B ) - ( A x. B ) ) ) = ( ( X x. B ) + ( 0 - ( X x. A ) ) ) ) | 
						
							| 17 |  | 0cnd |  |-  ( ph -> 0 e. CC ) | 
						
							| 18 | 8 17 6 | addsubassd |  |-  ( ph -> ( ( ( X x. B ) + 0 ) - ( X x. A ) ) = ( ( X x. B ) + ( 0 - ( X x. A ) ) ) ) | 
						
							| 19 | 8 | addridd |  |-  ( ph -> ( ( X x. B ) + 0 ) = ( X x. B ) ) | 
						
							| 20 | 19 | oveq1d |  |-  ( ph -> ( ( ( X x. B ) + 0 ) - ( X x. A ) ) = ( ( X x. B ) - ( X x. A ) ) ) | 
						
							| 21 | 16 18 20 | 3eqtr2d |  |-  ( ph -> ( ( ( B x. A ) - ( X x. A ) ) + ( ( X x. B ) - ( A x. B ) ) ) = ( ( X x. B ) - ( X x. A ) ) ) | 
						
							| 22 | 2 3 1 | subdird |  |-  ( ph -> ( ( B - X ) x. A ) = ( ( B x. A ) - ( X x. A ) ) ) | 
						
							| 23 | 3 1 2 | subdird |  |-  ( ph -> ( ( X - A ) x. B ) = ( ( X x. B ) - ( A x. B ) ) ) | 
						
							| 24 | 22 23 | oveq12d |  |-  ( ph -> ( ( ( B - X ) x. A ) + ( ( X - A ) x. B ) ) = ( ( ( B x. A ) - ( X x. A ) ) + ( ( X x. B ) - ( A x. B ) ) ) ) | 
						
							| 25 | 3 2 1 | subdid |  |-  ( ph -> ( X x. ( B - A ) ) = ( ( X x. B ) - ( X x. A ) ) ) | 
						
							| 26 | 21 24 25 | 3eqtr4rd |  |-  ( ph -> ( X x. ( B - A ) ) = ( ( ( B - X ) x. A ) + ( ( X - A ) x. B ) ) ) | 
						
							| 27 | 26 | oveq1d |  |-  ( ph -> ( ( X x. ( B - A ) ) / ( B - A ) ) = ( ( ( ( B - X ) x. A ) + ( ( X - A ) x. B ) ) / ( B - A ) ) ) | 
						
							| 28 | 2 3 | subcld |  |-  ( ph -> ( B - X ) e. CC ) | 
						
							| 29 | 28 1 | mulcld |  |-  ( ph -> ( ( B - X ) x. A ) e. CC ) | 
						
							| 30 | 3 1 | subcld |  |-  ( ph -> ( X - A ) e. CC ) | 
						
							| 31 | 30 2 | mulcld |  |-  ( ph -> ( ( X - A ) x. B ) e. CC ) | 
						
							| 32 | 2 1 | subcld |  |-  ( ph -> ( B - A ) e. CC ) | 
						
							| 33 | 4 | necomd |  |-  ( ph -> B =/= A ) | 
						
							| 34 | 2 1 33 | subne0d |  |-  ( ph -> ( B - A ) =/= 0 ) | 
						
							| 35 | 29 31 32 34 | divdird |  |-  ( ph -> ( ( ( ( B - X ) x. A ) + ( ( X - A ) x. B ) ) / ( B - A ) ) = ( ( ( ( B - X ) x. A ) / ( B - A ) ) + ( ( ( X - A ) x. B ) / ( B - A ) ) ) ) | 
						
							| 36 | 27 35 | eqtrd |  |-  ( ph -> ( ( X x. ( B - A ) ) / ( B - A ) ) = ( ( ( ( B - X ) x. A ) / ( B - A ) ) + ( ( ( X - A ) x. B ) / ( B - A ) ) ) ) | 
						
							| 37 | 3 32 34 | divcan4d |  |-  ( ph -> ( ( X x. ( B - A ) ) / ( B - A ) ) = X ) | 
						
							| 38 | 28 1 32 34 | div23d |  |-  ( ph -> ( ( ( B - X ) x. A ) / ( B - A ) ) = ( ( ( B - X ) / ( B - A ) ) x. A ) ) | 
						
							| 39 | 30 2 32 34 | div23d |  |-  ( ph -> ( ( ( X - A ) x. B ) / ( B - A ) ) = ( ( ( X - A ) / ( B - A ) ) x. B ) ) | 
						
							| 40 | 38 39 | oveq12d |  |-  ( ph -> ( ( ( ( B - X ) x. A ) / ( B - A ) ) + ( ( ( X - A ) x. B ) / ( B - A ) ) ) = ( ( ( ( B - X ) / ( B - A ) ) x. A ) + ( ( ( X - A ) / ( B - A ) ) x. B ) ) ) | 
						
							| 41 | 36 37 40 | 3eqtr3d |  |-  ( ph -> X = ( ( ( ( B - X ) / ( B - A ) ) x. A ) + ( ( ( X - A ) / ( B - A ) ) x. B ) ) ) |