| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-bary1.a |
|- ( ph -> A e. CC ) |
| 2 |
|
bj-bary1.b |
|- ( ph -> B e. CC ) |
| 3 |
|
bj-bary1.x |
|- ( ph -> X e. CC ) |
| 4 |
|
bj-bary1.neq |
|- ( ph -> A =/= B ) |
| 5 |
|
bj-bary1.s |
|- ( ph -> S e. CC ) |
| 6 |
|
bj-bary1.t |
|- ( ph -> T e. CC ) |
| 7 |
5 6
|
pncand |
|- ( ph -> ( ( S + T ) - T ) = S ) |
| 8 |
|
oveq1 |
|- ( ( S + T ) = 1 -> ( ( S + T ) - T ) = ( 1 - T ) ) |
| 9 |
|
pm5.31 |
|- ( ( ( ( S + T ) - T ) = S /\ ( ( S + T ) = 1 -> ( ( S + T ) - T ) = ( 1 - T ) ) ) -> ( ( S + T ) = 1 -> ( ( ( S + T ) - T ) = ( 1 - T ) /\ ( ( S + T ) - T ) = S ) ) ) |
| 10 |
7 8 9
|
sylancl |
|- ( ph -> ( ( S + T ) = 1 -> ( ( ( S + T ) - T ) = ( 1 - T ) /\ ( ( S + T ) - T ) = S ) ) ) |
| 11 |
|
eqtr2 |
|- ( ( ( ( S + T ) - T ) = ( 1 - T ) /\ ( ( S + T ) - T ) = S ) -> ( 1 - T ) = S ) |
| 12 |
11
|
eqcomd |
|- ( ( ( ( S + T ) - T ) = ( 1 - T ) /\ ( ( S + T ) - T ) = S ) -> S = ( 1 - T ) ) |
| 13 |
10 12
|
syl6 |
|- ( ph -> ( ( S + T ) = 1 -> S = ( 1 - T ) ) ) |
| 14 |
|
oveq1 |
|- ( S = ( 1 - T ) -> ( S x. A ) = ( ( 1 - T ) x. A ) ) |
| 15 |
14
|
oveq1d |
|- ( S = ( 1 - T ) -> ( ( S x. A ) + ( T x. B ) ) = ( ( ( 1 - T ) x. A ) + ( T x. B ) ) ) |
| 16 |
|
eqtr |
|- ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( ( S x. A ) + ( T x. B ) ) = ( ( ( 1 - T ) x. A ) + ( T x. B ) ) ) -> X = ( ( ( 1 - T ) x. A ) + ( T x. B ) ) ) |
| 17 |
15 16
|
sylan2 |
|- ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ S = ( 1 - T ) ) -> X = ( ( ( 1 - T ) x. A ) + ( T x. B ) ) ) |
| 18 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 19 |
18 6 1
|
subdird |
|- ( ph -> ( ( 1 - T ) x. A ) = ( ( 1 x. A ) - ( T x. A ) ) ) |
| 20 |
1
|
mullidd |
|- ( ph -> ( 1 x. A ) = A ) |
| 21 |
20
|
oveq1d |
|- ( ph -> ( ( 1 x. A ) - ( T x. A ) ) = ( A - ( T x. A ) ) ) |
| 22 |
19 21
|
eqtrd |
|- ( ph -> ( ( 1 - T ) x. A ) = ( A - ( T x. A ) ) ) |
| 23 |
22
|
oveq1d |
|- ( ph -> ( ( ( 1 - T ) x. A ) + ( T x. B ) ) = ( ( A - ( T x. A ) ) + ( T x. B ) ) ) |
| 24 |
17 23
|
sylan9eqr |
|- ( ( ph /\ ( X = ( ( S x. A ) + ( T x. B ) ) /\ S = ( 1 - T ) ) ) -> X = ( ( A - ( T x. A ) ) + ( T x. B ) ) ) |
| 25 |
24
|
ex |
|- ( ph -> ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ S = ( 1 - T ) ) -> X = ( ( A - ( T x. A ) ) + ( T x. B ) ) ) ) |
| 26 |
13 25
|
sylan2d |
|- ( ph -> ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( S + T ) = 1 ) -> X = ( ( A - ( T x. A ) ) + ( T x. B ) ) ) ) |
| 27 |
6 1
|
mulcld |
|- ( ph -> ( T x. A ) e. CC ) |
| 28 |
6 2
|
mulcld |
|- ( ph -> ( T x. B ) e. CC ) |
| 29 |
1 27 28
|
subadd23d |
|- ( ph -> ( ( A - ( T x. A ) ) + ( T x. B ) ) = ( A + ( ( T x. B ) - ( T x. A ) ) ) ) |
| 30 |
6 2 1
|
subdid |
|- ( ph -> ( T x. ( B - A ) ) = ( ( T x. B ) - ( T x. A ) ) ) |
| 31 |
30
|
eqcomd |
|- ( ph -> ( ( T x. B ) - ( T x. A ) ) = ( T x. ( B - A ) ) ) |
| 32 |
31
|
oveq2d |
|- ( ph -> ( A + ( ( T x. B ) - ( T x. A ) ) ) = ( A + ( T x. ( B - A ) ) ) ) |
| 33 |
29 32
|
eqtrd |
|- ( ph -> ( ( A - ( T x. A ) ) + ( T x. B ) ) = ( A + ( T x. ( B - A ) ) ) ) |
| 34 |
33
|
eqeq2d |
|- ( ph -> ( X = ( ( A - ( T x. A ) ) + ( T x. B ) ) <-> X = ( A + ( T x. ( B - A ) ) ) ) ) |
| 35 |
26 34
|
sylibd |
|- ( ph -> ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( S + T ) = 1 ) -> X = ( A + ( T x. ( B - A ) ) ) ) ) |
| 36 |
|
oveq1 |
|- ( X = ( A + ( T x. ( B - A ) ) ) -> ( X - A ) = ( ( A + ( T x. ( B - A ) ) ) - A ) ) |
| 37 |
2 1
|
subcld |
|- ( ph -> ( B - A ) e. CC ) |
| 38 |
6 37
|
mulcld |
|- ( ph -> ( T x. ( B - A ) ) e. CC ) |
| 39 |
1 38
|
pncan2d |
|- ( ph -> ( ( A + ( T x. ( B - A ) ) ) - A ) = ( T x. ( B - A ) ) ) |
| 40 |
39
|
eqeq2d |
|- ( ph -> ( ( X - A ) = ( ( A + ( T x. ( B - A ) ) ) - A ) <-> ( X - A ) = ( T x. ( B - A ) ) ) ) |
| 41 |
36 40
|
imbitrid |
|- ( ph -> ( X = ( A + ( T x. ( B - A ) ) ) -> ( X - A ) = ( T x. ( B - A ) ) ) ) |
| 42 |
|
eqcom |
|- ( ( X - A ) = ( T x. ( B - A ) ) <-> ( T x. ( B - A ) ) = ( X - A ) ) |
| 43 |
6 37
|
mulcomd |
|- ( ph -> ( T x. ( B - A ) ) = ( ( B - A ) x. T ) ) |
| 44 |
43
|
eqeq1d |
|- ( ph -> ( ( T x. ( B - A ) ) = ( X - A ) <-> ( ( B - A ) x. T ) = ( X - A ) ) ) |
| 45 |
3 1
|
subcld |
|- ( ph -> ( X - A ) e. CC ) |
| 46 |
4
|
necomd |
|- ( ph -> B =/= A ) |
| 47 |
2 1 46
|
subne0d |
|- ( ph -> ( B - A ) =/= 0 ) |
| 48 |
37 6 45 47
|
rdiv |
|- ( ph -> ( ( ( B - A ) x. T ) = ( X - A ) <-> T = ( ( X - A ) / ( B - A ) ) ) ) |
| 49 |
48
|
biimpd |
|- ( ph -> ( ( ( B - A ) x. T ) = ( X - A ) -> T = ( ( X - A ) / ( B - A ) ) ) ) |
| 50 |
44 49
|
sylbid |
|- ( ph -> ( ( T x. ( B - A ) ) = ( X - A ) -> T = ( ( X - A ) / ( B - A ) ) ) ) |
| 51 |
42 50
|
biimtrid |
|- ( ph -> ( ( X - A ) = ( T x. ( B - A ) ) -> T = ( ( X - A ) / ( B - A ) ) ) ) |
| 52 |
35 41 51
|
3syld |
|- ( ph -> ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( S + T ) = 1 ) -> T = ( ( X - A ) / ( B - A ) ) ) ) |