| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-bary1.a |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | bj-bary1.b |  |-  ( ph -> B e. CC ) | 
						
							| 3 |  | bj-bary1.x |  |-  ( ph -> X e. CC ) | 
						
							| 4 |  | bj-bary1.neq |  |-  ( ph -> A =/= B ) | 
						
							| 5 |  | bj-bary1.s |  |-  ( ph -> S e. CC ) | 
						
							| 6 |  | bj-bary1.t |  |-  ( ph -> T e. CC ) | 
						
							| 7 | 5 6 | pncand |  |-  ( ph -> ( ( S + T ) - T ) = S ) | 
						
							| 8 |  | oveq1 |  |-  ( ( S + T ) = 1 -> ( ( S + T ) - T ) = ( 1 - T ) ) | 
						
							| 9 |  | pm5.31 |  |-  ( ( ( ( S + T ) - T ) = S /\ ( ( S + T ) = 1 -> ( ( S + T ) - T ) = ( 1 - T ) ) ) -> ( ( S + T ) = 1 -> ( ( ( S + T ) - T ) = ( 1 - T ) /\ ( ( S + T ) - T ) = S ) ) ) | 
						
							| 10 | 7 8 9 | sylancl |  |-  ( ph -> ( ( S + T ) = 1 -> ( ( ( S + T ) - T ) = ( 1 - T ) /\ ( ( S + T ) - T ) = S ) ) ) | 
						
							| 11 |  | eqtr2 |  |-  ( ( ( ( S + T ) - T ) = ( 1 - T ) /\ ( ( S + T ) - T ) = S ) -> ( 1 - T ) = S ) | 
						
							| 12 | 11 | eqcomd |  |-  ( ( ( ( S + T ) - T ) = ( 1 - T ) /\ ( ( S + T ) - T ) = S ) -> S = ( 1 - T ) ) | 
						
							| 13 | 10 12 | syl6 |  |-  ( ph -> ( ( S + T ) = 1 -> S = ( 1 - T ) ) ) | 
						
							| 14 |  | oveq1 |  |-  ( S = ( 1 - T ) -> ( S x. A ) = ( ( 1 - T ) x. A ) ) | 
						
							| 15 | 14 | oveq1d |  |-  ( S = ( 1 - T ) -> ( ( S x. A ) + ( T x. B ) ) = ( ( ( 1 - T ) x. A ) + ( T x. B ) ) ) | 
						
							| 16 |  | eqtr |  |-  ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( ( S x. A ) + ( T x. B ) ) = ( ( ( 1 - T ) x. A ) + ( T x. B ) ) ) -> X = ( ( ( 1 - T ) x. A ) + ( T x. B ) ) ) | 
						
							| 17 | 15 16 | sylan2 |  |-  ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ S = ( 1 - T ) ) -> X = ( ( ( 1 - T ) x. A ) + ( T x. B ) ) ) | 
						
							| 18 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 19 | 18 6 1 | subdird |  |-  ( ph -> ( ( 1 - T ) x. A ) = ( ( 1 x. A ) - ( T x. A ) ) ) | 
						
							| 20 | 1 | mullidd |  |-  ( ph -> ( 1 x. A ) = A ) | 
						
							| 21 | 20 | oveq1d |  |-  ( ph -> ( ( 1 x. A ) - ( T x. A ) ) = ( A - ( T x. A ) ) ) | 
						
							| 22 | 19 21 | eqtrd |  |-  ( ph -> ( ( 1 - T ) x. A ) = ( A - ( T x. A ) ) ) | 
						
							| 23 | 22 | oveq1d |  |-  ( ph -> ( ( ( 1 - T ) x. A ) + ( T x. B ) ) = ( ( A - ( T x. A ) ) + ( T x. B ) ) ) | 
						
							| 24 | 17 23 | sylan9eqr |  |-  ( ( ph /\ ( X = ( ( S x. A ) + ( T x. B ) ) /\ S = ( 1 - T ) ) ) -> X = ( ( A - ( T x. A ) ) + ( T x. B ) ) ) | 
						
							| 25 | 24 | ex |  |-  ( ph -> ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ S = ( 1 - T ) ) -> X = ( ( A - ( T x. A ) ) + ( T x. B ) ) ) ) | 
						
							| 26 | 13 25 | sylan2d |  |-  ( ph -> ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( S + T ) = 1 ) -> X = ( ( A - ( T x. A ) ) + ( T x. B ) ) ) ) | 
						
							| 27 | 6 1 | mulcld |  |-  ( ph -> ( T x. A ) e. CC ) | 
						
							| 28 | 6 2 | mulcld |  |-  ( ph -> ( T x. B ) e. CC ) | 
						
							| 29 | 1 27 28 | subadd23d |  |-  ( ph -> ( ( A - ( T x. A ) ) + ( T x. B ) ) = ( A + ( ( T x. B ) - ( T x. A ) ) ) ) | 
						
							| 30 | 6 2 1 | subdid |  |-  ( ph -> ( T x. ( B - A ) ) = ( ( T x. B ) - ( T x. A ) ) ) | 
						
							| 31 | 30 | eqcomd |  |-  ( ph -> ( ( T x. B ) - ( T x. A ) ) = ( T x. ( B - A ) ) ) | 
						
							| 32 | 31 | oveq2d |  |-  ( ph -> ( A + ( ( T x. B ) - ( T x. A ) ) ) = ( A + ( T x. ( B - A ) ) ) ) | 
						
							| 33 | 29 32 | eqtrd |  |-  ( ph -> ( ( A - ( T x. A ) ) + ( T x. B ) ) = ( A + ( T x. ( B - A ) ) ) ) | 
						
							| 34 | 33 | eqeq2d |  |-  ( ph -> ( X = ( ( A - ( T x. A ) ) + ( T x. B ) ) <-> X = ( A + ( T x. ( B - A ) ) ) ) ) | 
						
							| 35 | 26 34 | sylibd |  |-  ( ph -> ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( S + T ) = 1 ) -> X = ( A + ( T x. ( B - A ) ) ) ) ) | 
						
							| 36 |  | oveq1 |  |-  ( X = ( A + ( T x. ( B - A ) ) ) -> ( X - A ) = ( ( A + ( T x. ( B - A ) ) ) - A ) ) | 
						
							| 37 | 2 1 | subcld |  |-  ( ph -> ( B - A ) e. CC ) | 
						
							| 38 | 6 37 | mulcld |  |-  ( ph -> ( T x. ( B - A ) ) e. CC ) | 
						
							| 39 | 1 38 | pncan2d |  |-  ( ph -> ( ( A + ( T x. ( B - A ) ) ) - A ) = ( T x. ( B - A ) ) ) | 
						
							| 40 | 39 | eqeq2d |  |-  ( ph -> ( ( X - A ) = ( ( A + ( T x. ( B - A ) ) ) - A ) <-> ( X - A ) = ( T x. ( B - A ) ) ) ) | 
						
							| 41 | 36 40 | imbitrid |  |-  ( ph -> ( X = ( A + ( T x. ( B - A ) ) ) -> ( X - A ) = ( T x. ( B - A ) ) ) ) | 
						
							| 42 |  | eqcom |  |-  ( ( X - A ) = ( T x. ( B - A ) ) <-> ( T x. ( B - A ) ) = ( X - A ) ) | 
						
							| 43 | 6 37 | mulcomd |  |-  ( ph -> ( T x. ( B - A ) ) = ( ( B - A ) x. T ) ) | 
						
							| 44 | 43 | eqeq1d |  |-  ( ph -> ( ( T x. ( B - A ) ) = ( X - A ) <-> ( ( B - A ) x. T ) = ( X - A ) ) ) | 
						
							| 45 | 3 1 | subcld |  |-  ( ph -> ( X - A ) e. CC ) | 
						
							| 46 | 4 | necomd |  |-  ( ph -> B =/= A ) | 
						
							| 47 | 2 1 46 | subne0d |  |-  ( ph -> ( B - A ) =/= 0 ) | 
						
							| 48 | 37 6 45 47 | rdiv |  |-  ( ph -> ( ( ( B - A ) x. T ) = ( X - A ) <-> T = ( ( X - A ) / ( B - A ) ) ) ) | 
						
							| 49 | 48 | biimpd |  |-  ( ph -> ( ( ( B - A ) x. T ) = ( X - A ) -> T = ( ( X - A ) / ( B - A ) ) ) ) | 
						
							| 50 | 44 49 | sylbid |  |-  ( ph -> ( ( T x. ( B - A ) ) = ( X - A ) -> T = ( ( X - A ) / ( B - A ) ) ) ) | 
						
							| 51 | 42 50 | biimtrid |  |-  ( ph -> ( ( X - A ) = ( T x. ( B - A ) ) -> T = ( ( X - A ) / ( B - A ) ) ) ) | 
						
							| 52 | 35 41 51 | 3syld |  |-  ( ph -> ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( S + T ) = 1 ) -> T = ( ( X - A ) / ( B - A ) ) ) ) |