Metamath Proof Explorer


Theorem bj-bary1lem1

Description: Lemma for bj-bary1: computation of one of the two barycentric coordinates of a barycenter of two points in one dimension (complex line). (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses bj-bary1.a φ A
bj-bary1.b φ B
bj-bary1.x φ X
bj-bary1.neq φ A B
bj-bary1.s φ S
bj-bary1.t φ T
Assertion bj-bary1lem1 φ X = S A + T B S + T = 1 T = X A B A

Proof

Step Hyp Ref Expression
1 bj-bary1.a φ A
2 bj-bary1.b φ B
3 bj-bary1.x φ X
4 bj-bary1.neq φ A B
5 bj-bary1.s φ S
6 bj-bary1.t φ T
7 5 6 pncand φ S + T - T = S
8 oveq1 S + T = 1 S + T - T = 1 T
9 pm5.31 S + T - T = S S + T = 1 S + T - T = 1 T S + T = 1 S + T - T = 1 T S + T - T = S
10 7 8 9 sylancl φ S + T = 1 S + T - T = 1 T S + T - T = S
11 eqtr2 S + T - T = 1 T S + T - T = S 1 T = S
12 11 eqcomd S + T - T = 1 T S + T - T = S S = 1 T
13 10 12 syl6 φ S + T = 1 S = 1 T
14 oveq1 S = 1 T S A = 1 T A
15 14 oveq1d S = 1 T S A + T B = 1 T A + T B
16 eqtr X = S A + T B S A + T B = 1 T A + T B X = 1 T A + T B
17 15 16 sylan2 X = S A + T B S = 1 T X = 1 T A + T B
18 1cnd φ 1
19 18 6 1 subdird φ 1 T A = 1 A T A
20 1 mulid2d φ 1 A = A
21 20 oveq1d φ 1 A T A = A T A
22 19 21 eqtrd φ 1 T A = A T A
23 22 oveq1d φ 1 T A + T B = A - T A + T B
24 17 23 sylan9eqr φ X = S A + T B S = 1 T X = A - T A + T B
25 24 ex φ X = S A + T B S = 1 T X = A - T A + T B
26 13 25 sylan2d φ X = S A + T B S + T = 1 X = A - T A + T B
27 6 1 mulcld φ T A
28 6 2 mulcld φ T B
29 1 27 28 subadd23d φ A - T A + T B = A + T B - T A
30 6 2 1 subdid φ T B A = T B T A
31 30 eqcomd φ T B T A = T B A
32 31 oveq2d φ A + T B - T A = A + T B A
33 29 32 eqtrd φ A - T A + T B = A + T B A
34 33 eqeq2d φ X = A - T A + T B X = A + T B A
35 26 34 sylibd φ X = S A + T B S + T = 1 X = A + T B A
36 oveq1 X = A + T B A X A = A + T B A - A
37 2 1 subcld φ B A
38 6 37 mulcld φ T B A
39 1 38 pncan2d φ A + T B A - A = T B A
40 39 eqeq2d φ X A = A + T B A - A X A = T B A
41 36 40 syl5ib φ X = A + T B A X A = T B A
42 eqcom X A = T B A T B A = X A
43 6 37 mulcomd φ T B A = B A T
44 43 eqeq1d φ T B A = X A B A T = X A
45 3 1 subcld φ X A
46 4 necomd φ B A
47 2 1 46 subne0d φ B A 0
48 37 6 45 47 rdiv φ B A T = X A T = X A B A
49 48 biimpd φ B A T = X A T = X A B A
50 44 49 sylbid φ T B A = X A T = X A B A
51 42 50 syl5bi φ X A = T B A T = X A B A
52 35 41 51 3syld φ X = S A + T B S + T = 1 T = X A B A