| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-bary1.a |  | 
						
							| 2 |  | bj-bary1.b |  | 
						
							| 3 |  | bj-bary1.x |  | 
						
							| 4 |  | bj-bary1.neq |  | 
						
							| 5 |  | bj-bary1.s |  | 
						
							| 6 |  | bj-bary1.t |  | 
						
							| 7 | 5 6 | pncand |  | 
						
							| 8 |  | oveq1 |  | 
						
							| 9 |  | pm5.31 |  | 
						
							| 10 | 7 8 9 | sylancl |  | 
						
							| 11 |  | eqtr2 |  | 
						
							| 12 | 11 | eqcomd |  | 
						
							| 13 | 10 12 | syl6 |  | 
						
							| 14 |  | oveq1 |  | 
						
							| 15 | 14 | oveq1d |  | 
						
							| 16 |  | eqtr |  | 
						
							| 17 | 15 16 | sylan2 |  | 
						
							| 18 |  | 1cnd |  | 
						
							| 19 | 18 6 1 | subdird |  | 
						
							| 20 | 1 | mullidd |  | 
						
							| 21 | 20 | oveq1d |  | 
						
							| 22 | 19 21 | eqtrd |  | 
						
							| 23 | 22 | oveq1d |  | 
						
							| 24 | 17 23 | sylan9eqr |  | 
						
							| 25 | 24 | ex |  | 
						
							| 26 | 13 25 | sylan2d |  | 
						
							| 27 | 6 1 | mulcld |  | 
						
							| 28 | 6 2 | mulcld |  | 
						
							| 29 | 1 27 28 | subadd23d |  | 
						
							| 30 | 6 2 1 | subdid |  | 
						
							| 31 | 30 | eqcomd |  | 
						
							| 32 | 31 | oveq2d |  | 
						
							| 33 | 29 32 | eqtrd |  | 
						
							| 34 | 33 | eqeq2d |  | 
						
							| 35 | 26 34 | sylibd |  | 
						
							| 36 |  | oveq1 |  | 
						
							| 37 | 2 1 | subcld |  | 
						
							| 38 | 6 37 | mulcld |  | 
						
							| 39 | 1 38 | pncan2d |  | 
						
							| 40 | 39 | eqeq2d |  | 
						
							| 41 | 36 40 | imbitrid |  | 
						
							| 42 |  | eqcom |  | 
						
							| 43 | 6 37 | mulcomd |  | 
						
							| 44 | 43 | eqeq1d |  | 
						
							| 45 | 3 1 | subcld |  | 
						
							| 46 | 4 | necomd |  | 
						
							| 47 | 2 1 46 | subne0d |  | 
						
							| 48 | 37 6 45 47 | rdiv |  | 
						
							| 49 | 48 | biimpd |  | 
						
							| 50 | 44 49 | sylbid |  | 
						
							| 51 | 42 50 | biimtrid |  | 
						
							| 52 | 35 41 51 | 3syld |  |