| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-bary1.a |
|
| 2 |
|
bj-bary1.b |
|
| 3 |
|
bj-bary1.x |
|
| 4 |
|
bj-bary1.neq |
|
| 5 |
|
bj-bary1.s |
|
| 6 |
|
bj-bary1.t |
|
| 7 |
5 6
|
pncand |
|
| 8 |
|
oveq1 |
|
| 9 |
|
pm5.31 |
|
| 10 |
7 8 9
|
sylancl |
|
| 11 |
|
eqtr2 |
|
| 12 |
11
|
eqcomd |
|
| 13 |
10 12
|
syl6 |
|
| 14 |
|
oveq1 |
|
| 15 |
14
|
oveq1d |
|
| 16 |
|
eqtr |
|
| 17 |
15 16
|
sylan2 |
|
| 18 |
|
1cnd |
|
| 19 |
18 6 1
|
subdird |
|
| 20 |
1
|
mullidd |
|
| 21 |
20
|
oveq1d |
|
| 22 |
19 21
|
eqtrd |
|
| 23 |
22
|
oveq1d |
|
| 24 |
17 23
|
sylan9eqr |
|
| 25 |
24
|
ex |
|
| 26 |
13 25
|
sylan2d |
|
| 27 |
6 1
|
mulcld |
|
| 28 |
6 2
|
mulcld |
|
| 29 |
1 27 28
|
subadd23d |
|
| 30 |
6 2 1
|
subdid |
|
| 31 |
30
|
eqcomd |
|
| 32 |
31
|
oveq2d |
|
| 33 |
29 32
|
eqtrd |
|
| 34 |
33
|
eqeq2d |
|
| 35 |
26 34
|
sylibd |
|
| 36 |
|
oveq1 |
|
| 37 |
2 1
|
subcld |
|
| 38 |
6 37
|
mulcld |
|
| 39 |
1 38
|
pncan2d |
|
| 40 |
39
|
eqeq2d |
|
| 41 |
36 40
|
imbitrid |
|
| 42 |
|
eqcom |
|
| 43 |
6 37
|
mulcomd |
|
| 44 |
43
|
eqeq1d |
|
| 45 |
3 1
|
subcld |
|
| 46 |
4
|
necomd |
|
| 47 |
2 1 46
|
subne0d |
|
| 48 |
37 6 45 47
|
rdiv |
|
| 49 |
48
|
biimpd |
|
| 50 |
44 49
|
sylbid |
|
| 51 |
42 50
|
biimtrid |
|
| 52 |
35 41 51
|
3syld |
|