Step |
Hyp |
Ref |
Expression |
1 |
|
bj-bary1.a |
|
2 |
|
bj-bary1.b |
|
3 |
|
bj-bary1.x |
|
4 |
|
bj-bary1.neq |
|
5 |
|
bj-bary1.s |
|
6 |
|
bj-bary1.t |
|
7 |
5 1
|
mulcld |
|
8 |
6 2
|
mulcld |
|
9 |
7 8
|
addcomd |
|
10 |
9
|
eqeq2d |
|
11 |
10
|
biimpd |
|
12 |
5 6
|
addcomd |
|
13 |
12
|
eqeq1d |
|
14 |
13
|
biimpd |
|
15 |
4
|
necomd |
|
16 |
2 1 3 15 6 5
|
bj-bary1lem1 |
|
17 |
11 14 16
|
syl2and |
|
18 |
3 2 1 2 4
|
div2subd |
|
19 |
18
|
eqeq2d |
|
20 |
17 19
|
sylibd |
|
21 |
1 2 3 4 5 6
|
bj-bary1lem1 |
|
22 |
20 21
|
jcad |
|
23 |
1 2 3 4
|
bj-bary1lem |
|
24 |
|
oveq1 |
|
25 |
|
oveq1 |
|
26 |
24 25
|
oveqan12d |
|
27 |
26
|
a1i |
|
28 |
|
eqtr3 |
|
29 |
23 27 28
|
syl6an |
|
30 |
|
oveq12 |
|
31 |
2 3
|
subcld |
|
32 |
3 1
|
subcld |
|
33 |
2 1
|
subcld |
|
34 |
2 1 15
|
subne0d |
|
35 |
31 32 33 34
|
divdird |
|
36 |
2 3 1
|
npncand |
|
37 |
33 34 36
|
diveq1bd |
|
38 |
35 37
|
eqtr3d |
|
39 |
38
|
eqeq2d |
|
40 |
30 39
|
syl5ib |
|
41 |
29 40
|
jcad |
|
42 |
22 41
|
impbid |
|