Metamath Proof Explorer


Theorem bj-bary1

Description: Barycentric coordinates in one dimension (complex line). In the statement, X is the barycenter of the two points A , B with respective normalized coefficients S , T . (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses bj-bary1.a φ A
bj-bary1.b φ B
bj-bary1.x φ X
bj-bary1.neq φ A B
bj-bary1.s φ S
bj-bary1.t φ T
Assertion bj-bary1 φ X = S A + T B S + T = 1 S = B X B A T = X A B A

Proof

Step Hyp Ref Expression
1 bj-bary1.a φ A
2 bj-bary1.b φ B
3 bj-bary1.x φ X
4 bj-bary1.neq φ A B
5 bj-bary1.s φ S
6 bj-bary1.t φ T
7 5 1 mulcld φ S A
8 6 2 mulcld φ T B
9 7 8 addcomd φ S A + T B = T B + S A
10 9 eqeq2d φ X = S A + T B X = T B + S A
11 10 biimpd φ X = S A + T B X = T B + S A
12 5 6 addcomd φ S + T = T + S
13 12 eqeq1d φ S + T = 1 T + S = 1
14 13 biimpd φ S + T = 1 T + S = 1
15 4 necomd φ B A
16 2 1 3 15 6 5 bj-bary1lem1 φ X = T B + S A T + S = 1 S = X B A B
17 11 14 16 syl2and φ X = S A + T B S + T = 1 S = X B A B
18 3 2 1 2 4 div2subd φ X B A B = B X B A
19 18 eqeq2d φ S = X B A B S = B X B A
20 17 19 sylibd φ X = S A + T B S + T = 1 S = B X B A
21 1 2 3 4 5 6 bj-bary1lem1 φ X = S A + T B S + T = 1 T = X A B A
22 20 21 jcad φ X = S A + T B S + T = 1 S = B X B A T = X A B A
23 1 2 3 4 bj-bary1lem φ X = B X B A A + X A B A B
24 oveq1 S = B X B A S A = B X B A A
25 oveq1 T = X A B A T B = X A B A B
26 24 25 oveqan12d S = B X B A T = X A B A S A + T B = B X B A A + X A B A B
27 26 a1i φ S = B X B A T = X A B A S A + T B = B X B A A + X A B A B
28 eqtr3 X = B X B A A + X A B A B S A + T B = B X B A A + X A B A B X = S A + T B
29 23 27 28 syl6an φ S = B X B A T = X A B A X = S A + T B
30 oveq12 S = B X B A T = X A B A S + T = B X B A + X A B A
31 2 3 subcld φ B X
32 3 1 subcld φ X A
33 2 1 subcld φ B A
34 2 1 15 subne0d φ B A 0
35 31 32 33 34 divdird φ B X + X - A B A = B X B A + X A B A
36 2 3 1 npncand φ B X + X - A = B A
37 33 34 36 diveq1bd φ B X + X - A B A = 1
38 35 37 eqtr3d φ B X B A + X A B A = 1
39 38 eqeq2d φ S + T = B X B A + X A B A S + T = 1
40 30 39 syl5ib φ S = B X B A T = X A B A S + T = 1
41 29 40 jcad φ S = B X B A T = X A B A X = S A + T B S + T = 1
42 22 41 impbid φ X = S A + T B S + T = 1 S = B X B A T = X A B A