Step |
Hyp |
Ref |
Expression |
1 |
|
bj-bary1.a |
|
2 |
|
bj-bary1.b |
|
3 |
|
bj-bary1.x |
|
4 |
|
bj-bary1.neq |
|
5 |
2 1
|
mulcld |
|
6 |
3 1
|
mulcld |
|
7 |
5 6
|
subcld |
|
8 |
3 2
|
mulcld |
|
9 |
1 2
|
mulcld |
|
10 |
7 8 9
|
addsub12d |
|
11 |
5 6 9
|
sub32d |
|
12 |
2 1
|
bj-subcom |
|
13 |
12
|
oveq1d |
|
14 |
11 13
|
eqtrd |
|
15 |
14
|
oveq2d |
|
16 |
10 15
|
eqtrd |
|
17 |
|
0cnd |
|
18 |
8 17 6
|
addsubassd |
|
19 |
8
|
addid1d |
|
20 |
19
|
oveq1d |
|
21 |
16 18 20
|
3eqtr2d |
|
22 |
2 3 1
|
subdird |
|
23 |
3 1 2
|
subdird |
|
24 |
22 23
|
oveq12d |
|
25 |
3 2 1
|
subdid |
|
26 |
21 24 25
|
3eqtr4rd |
|
27 |
26
|
oveq1d |
|
28 |
2 3
|
subcld |
|
29 |
28 1
|
mulcld |
|
30 |
3 1
|
subcld |
|
31 |
30 2
|
mulcld |
|
32 |
2 1
|
subcld |
|
33 |
4
|
necomd |
|
34 |
2 1 33
|
subne0d |
|
35 |
29 31 32 34
|
divdird |
|
36 |
27 35
|
eqtrd |
|
37 |
3 32 34
|
divcan4d |
|
38 |
28 1 32 34
|
div23d |
|
39 |
30 2 32 34
|
div23d |
|
40 |
38 39
|
oveq12d |
|
41 |
36 37 40
|
3eqtr3d |
|