Step |
Hyp |
Ref |
Expression |
1 |
|
bj-bary1.a |
|- ( ph -> A e. CC ) |
2 |
|
bj-bary1.b |
|- ( ph -> B e. CC ) |
3 |
|
bj-bary1.x |
|- ( ph -> X e. CC ) |
4 |
|
bj-bary1.neq |
|- ( ph -> A =/= B ) |
5 |
|
bj-bary1.s |
|- ( ph -> S e. CC ) |
6 |
|
bj-bary1.t |
|- ( ph -> T e. CC ) |
7 |
5 1
|
mulcld |
|- ( ph -> ( S x. A ) e. CC ) |
8 |
6 2
|
mulcld |
|- ( ph -> ( T x. B ) e. CC ) |
9 |
7 8
|
addcomd |
|- ( ph -> ( ( S x. A ) + ( T x. B ) ) = ( ( T x. B ) + ( S x. A ) ) ) |
10 |
9
|
eqeq2d |
|- ( ph -> ( X = ( ( S x. A ) + ( T x. B ) ) <-> X = ( ( T x. B ) + ( S x. A ) ) ) ) |
11 |
10
|
biimpd |
|- ( ph -> ( X = ( ( S x. A ) + ( T x. B ) ) -> X = ( ( T x. B ) + ( S x. A ) ) ) ) |
12 |
5 6
|
addcomd |
|- ( ph -> ( S + T ) = ( T + S ) ) |
13 |
12
|
eqeq1d |
|- ( ph -> ( ( S + T ) = 1 <-> ( T + S ) = 1 ) ) |
14 |
13
|
biimpd |
|- ( ph -> ( ( S + T ) = 1 -> ( T + S ) = 1 ) ) |
15 |
4
|
necomd |
|- ( ph -> B =/= A ) |
16 |
2 1 3 15 6 5
|
bj-bary1lem1 |
|- ( ph -> ( ( X = ( ( T x. B ) + ( S x. A ) ) /\ ( T + S ) = 1 ) -> S = ( ( X - B ) / ( A - B ) ) ) ) |
17 |
11 14 16
|
syl2and |
|- ( ph -> ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( S + T ) = 1 ) -> S = ( ( X - B ) / ( A - B ) ) ) ) |
18 |
3 2 1 2 4
|
div2subd |
|- ( ph -> ( ( X - B ) / ( A - B ) ) = ( ( B - X ) / ( B - A ) ) ) |
19 |
18
|
eqeq2d |
|- ( ph -> ( S = ( ( X - B ) / ( A - B ) ) <-> S = ( ( B - X ) / ( B - A ) ) ) ) |
20 |
17 19
|
sylibd |
|- ( ph -> ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( S + T ) = 1 ) -> S = ( ( B - X ) / ( B - A ) ) ) ) |
21 |
1 2 3 4 5 6
|
bj-bary1lem1 |
|- ( ph -> ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( S + T ) = 1 ) -> T = ( ( X - A ) / ( B - A ) ) ) ) |
22 |
20 21
|
jcad |
|- ( ph -> ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( S + T ) = 1 ) -> ( S = ( ( B - X ) / ( B - A ) ) /\ T = ( ( X - A ) / ( B - A ) ) ) ) ) |
23 |
1 2 3 4
|
bj-bary1lem |
|- ( ph -> X = ( ( ( ( B - X ) / ( B - A ) ) x. A ) + ( ( ( X - A ) / ( B - A ) ) x. B ) ) ) |
24 |
|
oveq1 |
|- ( S = ( ( B - X ) / ( B - A ) ) -> ( S x. A ) = ( ( ( B - X ) / ( B - A ) ) x. A ) ) |
25 |
|
oveq1 |
|- ( T = ( ( X - A ) / ( B - A ) ) -> ( T x. B ) = ( ( ( X - A ) / ( B - A ) ) x. B ) ) |
26 |
24 25
|
oveqan12d |
|- ( ( S = ( ( B - X ) / ( B - A ) ) /\ T = ( ( X - A ) / ( B - A ) ) ) -> ( ( S x. A ) + ( T x. B ) ) = ( ( ( ( B - X ) / ( B - A ) ) x. A ) + ( ( ( X - A ) / ( B - A ) ) x. B ) ) ) |
27 |
26
|
a1i |
|- ( ph -> ( ( S = ( ( B - X ) / ( B - A ) ) /\ T = ( ( X - A ) / ( B - A ) ) ) -> ( ( S x. A ) + ( T x. B ) ) = ( ( ( ( B - X ) / ( B - A ) ) x. A ) + ( ( ( X - A ) / ( B - A ) ) x. B ) ) ) ) |
28 |
|
eqtr3 |
|- ( ( X = ( ( ( ( B - X ) / ( B - A ) ) x. A ) + ( ( ( X - A ) / ( B - A ) ) x. B ) ) /\ ( ( S x. A ) + ( T x. B ) ) = ( ( ( ( B - X ) / ( B - A ) ) x. A ) + ( ( ( X - A ) / ( B - A ) ) x. B ) ) ) -> X = ( ( S x. A ) + ( T x. B ) ) ) |
29 |
23 27 28
|
syl6an |
|- ( ph -> ( ( S = ( ( B - X ) / ( B - A ) ) /\ T = ( ( X - A ) / ( B - A ) ) ) -> X = ( ( S x. A ) + ( T x. B ) ) ) ) |
30 |
|
oveq12 |
|- ( ( S = ( ( B - X ) / ( B - A ) ) /\ T = ( ( X - A ) / ( B - A ) ) ) -> ( S + T ) = ( ( ( B - X ) / ( B - A ) ) + ( ( X - A ) / ( B - A ) ) ) ) |
31 |
2 3
|
subcld |
|- ( ph -> ( B - X ) e. CC ) |
32 |
3 1
|
subcld |
|- ( ph -> ( X - A ) e. CC ) |
33 |
2 1
|
subcld |
|- ( ph -> ( B - A ) e. CC ) |
34 |
2 1 15
|
subne0d |
|- ( ph -> ( B - A ) =/= 0 ) |
35 |
31 32 33 34
|
divdird |
|- ( ph -> ( ( ( B - X ) + ( X - A ) ) / ( B - A ) ) = ( ( ( B - X ) / ( B - A ) ) + ( ( X - A ) / ( B - A ) ) ) ) |
36 |
2 3 1
|
npncand |
|- ( ph -> ( ( B - X ) + ( X - A ) ) = ( B - A ) ) |
37 |
33 34 36
|
diveq1bd |
|- ( ph -> ( ( ( B - X ) + ( X - A ) ) / ( B - A ) ) = 1 ) |
38 |
35 37
|
eqtr3d |
|- ( ph -> ( ( ( B - X ) / ( B - A ) ) + ( ( X - A ) / ( B - A ) ) ) = 1 ) |
39 |
38
|
eqeq2d |
|- ( ph -> ( ( S + T ) = ( ( ( B - X ) / ( B - A ) ) + ( ( X - A ) / ( B - A ) ) ) <-> ( S + T ) = 1 ) ) |
40 |
30 39
|
syl5ib |
|- ( ph -> ( ( S = ( ( B - X ) / ( B - A ) ) /\ T = ( ( X - A ) / ( B - A ) ) ) -> ( S + T ) = 1 ) ) |
41 |
29 40
|
jcad |
|- ( ph -> ( ( S = ( ( B - X ) / ( B - A ) ) /\ T = ( ( X - A ) / ( B - A ) ) ) -> ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( S + T ) = 1 ) ) ) |
42 |
22 41
|
impbid |
|- ( ph -> ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( S + T ) = 1 ) <-> ( S = ( ( B - X ) / ( B - A ) ) /\ T = ( ( X - A ) / ( B - A ) ) ) ) ) |