| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-bary1.a |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | bj-bary1.b |  |-  ( ph -> B e. CC ) | 
						
							| 3 |  | bj-bary1.x |  |-  ( ph -> X e. CC ) | 
						
							| 4 |  | bj-bary1.neq |  |-  ( ph -> A =/= B ) | 
						
							| 5 |  | bj-bary1.s |  |-  ( ph -> S e. CC ) | 
						
							| 6 |  | bj-bary1.t |  |-  ( ph -> T e. CC ) | 
						
							| 7 | 5 1 | mulcld |  |-  ( ph -> ( S x. A ) e. CC ) | 
						
							| 8 | 6 2 | mulcld |  |-  ( ph -> ( T x. B ) e. CC ) | 
						
							| 9 | 7 8 | addcomd |  |-  ( ph -> ( ( S x. A ) + ( T x. B ) ) = ( ( T x. B ) + ( S x. A ) ) ) | 
						
							| 10 | 9 | eqeq2d |  |-  ( ph -> ( X = ( ( S x. A ) + ( T x. B ) ) <-> X = ( ( T x. B ) + ( S x. A ) ) ) ) | 
						
							| 11 | 10 | biimpd |  |-  ( ph -> ( X = ( ( S x. A ) + ( T x. B ) ) -> X = ( ( T x. B ) + ( S x. A ) ) ) ) | 
						
							| 12 | 5 6 | addcomd |  |-  ( ph -> ( S + T ) = ( T + S ) ) | 
						
							| 13 | 12 | eqeq1d |  |-  ( ph -> ( ( S + T ) = 1 <-> ( T + S ) = 1 ) ) | 
						
							| 14 | 13 | biimpd |  |-  ( ph -> ( ( S + T ) = 1 -> ( T + S ) = 1 ) ) | 
						
							| 15 | 4 | necomd |  |-  ( ph -> B =/= A ) | 
						
							| 16 | 2 1 3 15 6 5 | bj-bary1lem1 |  |-  ( ph -> ( ( X = ( ( T x. B ) + ( S x. A ) ) /\ ( T + S ) = 1 ) -> S = ( ( X - B ) / ( A - B ) ) ) ) | 
						
							| 17 | 11 14 16 | syl2and |  |-  ( ph -> ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( S + T ) = 1 ) -> S = ( ( X - B ) / ( A - B ) ) ) ) | 
						
							| 18 | 3 2 1 2 4 | div2subd |  |-  ( ph -> ( ( X - B ) / ( A - B ) ) = ( ( B - X ) / ( B - A ) ) ) | 
						
							| 19 | 18 | eqeq2d |  |-  ( ph -> ( S = ( ( X - B ) / ( A - B ) ) <-> S = ( ( B - X ) / ( B - A ) ) ) ) | 
						
							| 20 | 17 19 | sylibd |  |-  ( ph -> ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( S + T ) = 1 ) -> S = ( ( B - X ) / ( B - A ) ) ) ) | 
						
							| 21 | 1 2 3 4 5 6 | bj-bary1lem1 |  |-  ( ph -> ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( S + T ) = 1 ) -> T = ( ( X - A ) / ( B - A ) ) ) ) | 
						
							| 22 | 20 21 | jcad |  |-  ( ph -> ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( S + T ) = 1 ) -> ( S = ( ( B - X ) / ( B - A ) ) /\ T = ( ( X - A ) / ( B - A ) ) ) ) ) | 
						
							| 23 | 1 2 3 4 | bj-bary1lem |  |-  ( ph -> X = ( ( ( ( B - X ) / ( B - A ) ) x. A ) + ( ( ( X - A ) / ( B - A ) ) x. B ) ) ) | 
						
							| 24 |  | oveq1 |  |-  ( S = ( ( B - X ) / ( B - A ) ) -> ( S x. A ) = ( ( ( B - X ) / ( B - A ) ) x. A ) ) | 
						
							| 25 |  | oveq1 |  |-  ( T = ( ( X - A ) / ( B - A ) ) -> ( T x. B ) = ( ( ( X - A ) / ( B - A ) ) x. B ) ) | 
						
							| 26 | 24 25 | oveqan12d |  |-  ( ( S = ( ( B - X ) / ( B - A ) ) /\ T = ( ( X - A ) / ( B - A ) ) ) -> ( ( S x. A ) + ( T x. B ) ) = ( ( ( ( B - X ) / ( B - A ) ) x. A ) + ( ( ( X - A ) / ( B - A ) ) x. B ) ) ) | 
						
							| 27 | 26 | a1i |  |-  ( ph -> ( ( S = ( ( B - X ) / ( B - A ) ) /\ T = ( ( X - A ) / ( B - A ) ) ) -> ( ( S x. A ) + ( T x. B ) ) = ( ( ( ( B - X ) / ( B - A ) ) x. A ) + ( ( ( X - A ) / ( B - A ) ) x. B ) ) ) ) | 
						
							| 28 |  | eqtr3 |  |-  ( ( X = ( ( ( ( B - X ) / ( B - A ) ) x. A ) + ( ( ( X - A ) / ( B - A ) ) x. B ) ) /\ ( ( S x. A ) + ( T x. B ) ) = ( ( ( ( B - X ) / ( B - A ) ) x. A ) + ( ( ( X - A ) / ( B - A ) ) x. B ) ) ) -> X = ( ( S x. A ) + ( T x. B ) ) ) | 
						
							| 29 | 23 27 28 | syl6an |  |-  ( ph -> ( ( S = ( ( B - X ) / ( B - A ) ) /\ T = ( ( X - A ) / ( B - A ) ) ) -> X = ( ( S x. A ) + ( T x. B ) ) ) ) | 
						
							| 30 |  | oveq12 |  |-  ( ( S = ( ( B - X ) / ( B - A ) ) /\ T = ( ( X - A ) / ( B - A ) ) ) -> ( S + T ) = ( ( ( B - X ) / ( B - A ) ) + ( ( X - A ) / ( B - A ) ) ) ) | 
						
							| 31 | 2 3 | subcld |  |-  ( ph -> ( B - X ) e. CC ) | 
						
							| 32 | 3 1 | subcld |  |-  ( ph -> ( X - A ) e. CC ) | 
						
							| 33 | 2 1 | subcld |  |-  ( ph -> ( B - A ) e. CC ) | 
						
							| 34 | 2 1 15 | subne0d |  |-  ( ph -> ( B - A ) =/= 0 ) | 
						
							| 35 | 31 32 33 34 | divdird |  |-  ( ph -> ( ( ( B - X ) + ( X - A ) ) / ( B - A ) ) = ( ( ( B - X ) / ( B - A ) ) + ( ( X - A ) / ( B - A ) ) ) ) | 
						
							| 36 | 2 3 1 | npncand |  |-  ( ph -> ( ( B - X ) + ( X - A ) ) = ( B - A ) ) | 
						
							| 37 | 33 34 36 | diveq1bd |  |-  ( ph -> ( ( ( B - X ) + ( X - A ) ) / ( B - A ) ) = 1 ) | 
						
							| 38 | 35 37 | eqtr3d |  |-  ( ph -> ( ( ( B - X ) / ( B - A ) ) + ( ( X - A ) / ( B - A ) ) ) = 1 ) | 
						
							| 39 | 38 | eqeq2d |  |-  ( ph -> ( ( S + T ) = ( ( ( B - X ) / ( B - A ) ) + ( ( X - A ) / ( B - A ) ) ) <-> ( S + T ) = 1 ) ) | 
						
							| 40 | 30 39 | imbitrid |  |-  ( ph -> ( ( S = ( ( B - X ) / ( B - A ) ) /\ T = ( ( X - A ) / ( B - A ) ) ) -> ( S + T ) = 1 ) ) | 
						
							| 41 | 29 40 | jcad |  |-  ( ph -> ( ( S = ( ( B - X ) / ( B - A ) ) /\ T = ( ( X - A ) / ( B - A ) ) ) -> ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( S + T ) = 1 ) ) ) | 
						
							| 42 | 22 41 | impbid |  |-  ( ph -> ( ( X = ( ( S x. A ) + ( T x. B ) ) /\ ( S + T ) = 1 ) <-> ( S = ( ( B - X ) / ( B - A ) ) /\ T = ( ( X - A ) / ( B - A ) ) ) ) ) |