Metamath Proof Explorer


Theorem bj-idres

Description: Alternate expression for the restricted identity relation. The advantage of that expression is to expose it as a "bounded" class, being included in the Cartesian square of the restricting class. (Contributed by BJ, 27-Dec-2023)

This is an alternate of idinxpresid (see idinxpres ). See also elrid and elidinxp . (Proof modification is discouraged.)

Ref Expression
Assertion bj-idres
|- ( _I |` A ) = ( _I i^i ( A X. A ) )

Proof

Step Hyp Ref Expression
1 df-res
 |-  ( _I |` A ) = ( _I i^i ( A X. _V ) )
2 inss1
 |-  ( _I i^i ( A X. _V ) ) C_ _I
3 relinxp
 |-  Rel ( _I i^i ( A X. _V ) )
4 elin
 |-  ( <. x , y >. e. ( _I i^i ( A X. _V ) ) <-> ( <. x , y >. e. _I /\ <. x , y >. e. ( A X. _V ) ) )
5 bj-opelidb1
 |-  ( <. x , y >. e. _I <-> ( x e. _V /\ x = y ) )
6 5 simprbi
 |-  ( <. x , y >. e. _I -> x = y )
7 opelxp1
 |-  ( <. x , y >. e. ( A X. _V ) -> x e. A )
8 simpr
 |-  ( ( x = y /\ x e. A ) -> x e. A )
9 eleq1w
 |-  ( x = y -> ( x e. A <-> y e. A ) )
10 9 biimpa
 |-  ( ( x = y /\ x e. A ) -> y e. A )
11 8 10 jca
 |-  ( ( x = y /\ x e. A ) -> ( x e. A /\ y e. A ) )
12 6 7 11 syl2an
 |-  ( ( <. x , y >. e. _I /\ <. x , y >. e. ( A X. _V ) ) -> ( x e. A /\ y e. A ) )
13 4 12 sylbi
 |-  ( <. x , y >. e. ( _I i^i ( A X. _V ) ) -> ( x e. A /\ y e. A ) )
14 opelxpi
 |-  ( ( x e. A /\ y e. A ) -> <. x , y >. e. ( A X. A ) )
15 13 14 syl
 |-  ( <. x , y >. e. ( _I i^i ( A X. _V ) ) -> <. x , y >. e. ( A X. A ) )
16 3 15 relssi
 |-  ( _I i^i ( A X. _V ) ) C_ ( A X. A )
17 2 16 ssini
 |-  ( _I i^i ( A X. _V ) ) C_ ( _I i^i ( A X. A ) )
18 ssv
 |-  A C_ _V
19 xpss2
 |-  ( A C_ _V -> ( A X. A ) C_ ( A X. _V ) )
20 sslin
 |-  ( ( A X. A ) C_ ( A X. _V ) -> ( _I i^i ( A X. A ) ) C_ ( _I i^i ( A X. _V ) ) )
21 18 19 20 mp2b
 |-  ( _I i^i ( A X. A ) ) C_ ( _I i^i ( A X. _V ) )
22 17 21 eqssi
 |-  ( _I i^i ( A X. _V ) ) = ( _I i^i ( A X. A ) )
23 1 22 eqtri
 |-  ( _I |` A ) = ( _I i^i ( A X. A ) )