Description: Alternate expression for the restricted identity relation. The advantage of that expression is to expose it as a "bounded" class, being included in the Cartesian square of the restricting class. (Contributed by BJ, 27-Dec-2023)
This is an alternate of idinxpresid (see idinxpres ). See also elrid and elidinxp . (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-idres | |- ( _I |` A ) = ( _I i^i ( A X. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | |- ( _I |` A ) = ( _I i^i ( A X. _V ) ) |
|
| 2 | inss1 | |- ( _I i^i ( A X. _V ) ) C_ _I |
|
| 3 | relinxp | |- Rel ( _I i^i ( A X. _V ) ) |
|
| 4 | elin | |- ( <. x , y >. e. ( _I i^i ( A X. _V ) ) <-> ( <. x , y >. e. _I /\ <. x , y >. e. ( A X. _V ) ) ) |
|
| 5 | bj-opelidb1 | |- ( <. x , y >. e. _I <-> ( x e. _V /\ x = y ) ) |
|
| 6 | 5 | simprbi | |- ( <. x , y >. e. _I -> x = y ) |
| 7 | opelxp1 | |- ( <. x , y >. e. ( A X. _V ) -> x e. A ) |
|
| 8 | simpr | |- ( ( x = y /\ x e. A ) -> x e. A ) |
|
| 9 | eleq1w | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
| 10 | 9 | biimpa | |- ( ( x = y /\ x e. A ) -> y e. A ) |
| 11 | 8 10 | jca | |- ( ( x = y /\ x e. A ) -> ( x e. A /\ y e. A ) ) |
| 12 | 6 7 11 | syl2an | |- ( ( <. x , y >. e. _I /\ <. x , y >. e. ( A X. _V ) ) -> ( x e. A /\ y e. A ) ) |
| 13 | 4 12 | sylbi | |- ( <. x , y >. e. ( _I i^i ( A X. _V ) ) -> ( x e. A /\ y e. A ) ) |
| 14 | opelxpi | |- ( ( x e. A /\ y e. A ) -> <. x , y >. e. ( A X. A ) ) |
|
| 15 | 13 14 | syl | |- ( <. x , y >. e. ( _I i^i ( A X. _V ) ) -> <. x , y >. e. ( A X. A ) ) |
| 16 | 3 15 | relssi | |- ( _I i^i ( A X. _V ) ) C_ ( A X. A ) |
| 17 | 2 16 | ssini | |- ( _I i^i ( A X. _V ) ) C_ ( _I i^i ( A X. A ) ) |
| 18 | ssv | |- A C_ _V |
|
| 19 | xpss2 | |- ( A C_ _V -> ( A X. A ) C_ ( A X. _V ) ) |
|
| 20 | sslin | |- ( ( A X. A ) C_ ( A X. _V ) -> ( _I i^i ( A X. A ) ) C_ ( _I i^i ( A X. _V ) ) ) |
|
| 21 | 18 19 20 | mp2b | |- ( _I i^i ( A X. A ) ) C_ ( _I i^i ( A X. _V ) ) |
| 22 | 17 21 | eqssi | |- ( _I i^i ( A X. _V ) ) = ( _I i^i ( A X. A ) ) |
| 23 | 1 22 | eqtri | |- ( _I |` A ) = ( _I i^i ( A X. A ) ) |