Metamath Proof Explorer


Theorem bj-idres

Description: Alternate expression for the restricted identity relation. The advantage of that expression is to expose it as a "bounded" class, being included in the Cartesian square of the restricting class. (Contributed by BJ, 27-Dec-2023)

This is an alternate of idinxpresid (see idinxpres ). See also elrid and elidinxp . (Proof modification is discouraged.)

Ref Expression
Assertion bj-idres I A = I A × A

Proof

Step Hyp Ref Expression
1 df-res I A = I A × V
2 inss1 I A × V I
3 relinxp Rel I A × V
4 elin x y I A × V x y I x y A × V
5 bj-opelidb1 x y I x V x = y
6 5 simprbi x y I x = y
7 opelxp1 x y A × V x A
8 simpr x = y x A x A
9 eleq1w x = y x A y A
10 9 biimpa x = y x A y A
11 8 10 jca x = y x A x A y A
12 6 7 11 syl2an x y I x y A × V x A y A
13 4 12 sylbi x y I A × V x A y A
14 opelxpi x A y A x y A × A
15 13 14 syl x y I A × V x y A × A
16 3 15 relssi I A × V A × A
17 2 16 ssini I A × V I A × A
18 ssv A V
19 xpss2 A V A × A A × V
20 sslin A × A A × V I A × A I A × V
21 18 19 20 mp2b I A × A I A × V
22 17 21 eqssi I A × V = I A × A
23 1 22 eqtri I A = I A × A