Metamath Proof Explorer


Theorem bj-opelidres

Description: Characterization of the ordered pairs in the restricted identity relation when the intersection of their component belongs to the restricting class. TODO: prove bj-idreseq from it. (Contributed by BJ, 29-Mar-2020)

Ref Expression
Assertion bj-opelidres A V A B I V A = B

Proof

Step Hyp Ref Expression
1 bj-idres I V = I V × V
2 1 eleq2i A B I V A B I V × V
3 elin A B I V × V A B I A B V × V
4 inex1g A V A B V
5 bj-opelid A B V A B I A = B
6 4 5 syl A V A B I A = B
7 opelxp A B V × V A V B V
8 7 a1i A V A B V × V A V B V
9 6 8 anbi12d A V A B I A B V × V A = B A V B V
10 simpl A = B A V B V A = B
11 eleq1 A = B A V B V
12 11 biimpcd A V A = B B V
13 12 anc2li A V A = B A V B V
14 13 ancld A V A = B A = B A V B V
15 10 14 impbid2 A V A = B A V B V A = B
16 9 15 bitrd A V A B I A B V × V A = B
17 3 16 syl5bb A V A B I V × V A = B
18 2 17 syl5bb A V A B I V A = B