Metamath Proof Explorer


Theorem bj-opelidres

Description: Characterization of the ordered pairs in the restricted identity relation when the intersection of their component belongs to the restricting class. TODO: prove bj-idreseq from it. (Contributed by BJ, 29-Mar-2020)

Ref Expression
Assertion bj-opelidres ( 𝐴𝑉 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( I ↾ 𝑉 ) ↔ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 bj-idres ( I ↾ 𝑉 ) = ( I ∩ ( 𝑉 × 𝑉 ) )
2 1 eleq2i ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( I ↾ 𝑉 ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( I ∩ ( 𝑉 × 𝑉 ) ) )
3 elin ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( I ∩ ( 𝑉 × 𝑉 ) ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ I ∧ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑉 × 𝑉 ) ) )
4 inex1g ( 𝐴𝑉 → ( 𝐴𝐵 ) ∈ V )
5 bj-opelid ( ( 𝐴𝐵 ) ∈ V → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ I ↔ 𝐴 = 𝐵 ) )
6 4 5 syl ( 𝐴𝑉 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ I ↔ 𝐴 = 𝐵 ) )
7 opelxp ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑉 × 𝑉 ) ↔ ( 𝐴𝑉𝐵𝑉 ) )
8 7 a1i ( 𝐴𝑉 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑉 × 𝑉 ) ↔ ( 𝐴𝑉𝐵𝑉 ) ) )
9 6 8 anbi12d ( 𝐴𝑉 → ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ I ∧ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑉 × 𝑉 ) ) ↔ ( 𝐴 = 𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) )
10 simpl ( ( 𝐴 = 𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) → 𝐴 = 𝐵 )
11 eleq1 ( 𝐴 = 𝐵 → ( 𝐴𝑉𝐵𝑉 ) )
12 11 biimpcd ( 𝐴𝑉 → ( 𝐴 = 𝐵𝐵𝑉 ) )
13 12 anc2li ( 𝐴𝑉 → ( 𝐴 = 𝐵 → ( 𝐴𝑉𝐵𝑉 ) ) )
14 13 ancld ( 𝐴𝑉 → ( 𝐴 = 𝐵 → ( 𝐴 = 𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) )
15 10 14 impbid2 ( 𝐴𝑉 → ( ( 𝐴 = 𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ↔ 𝐴 = 𝐵 ) )
16 9 15 bitrd ( 𝐴𝑉 → ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ I ∧ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑉 × 𝑉 ) ) ↔ 𝐴 = 𝐵 ) )
17 3 16 syl5bb ( 𝐴𝑉 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( I ∩ ( 𝑉 × 𝑉 ) ) ↔ 𝐴 = 𝐵 ) )
18 2 17 syl5bb ( 𝐴𝑉 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( I ↾ 𝑉 ) ↔ 𝐴 = 𝐵 ) )