Description: Alternate expression for the restricted identity relation. The advantage of that expression is to expose it as a "bounded" class, being included in the Cartesian square of the restricting class. (Contributed by BJ, 27-Dec-2023)
This is an alternate of idinxpresid (see idinxpres ). See also elrid and elidinxp . (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-idres | ⊢ ( I ↾ 𝐴 ) = ( I ∩ ( 𝐴 × 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | ⊢ ( I ↾ 𝐴 ) = ( I ∩ ( 𝐴 × V ) ) | |
| 2 | inss1 | ⊢ ( I ∩ ( 𝐴 × V ) ) ⊆ I | |
| 3 | relinxp | ⊢ Rel ( I ∩ ( 𝐴 × V ) ) | |
| 4 | elin | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( I ∩ ( 𝐴 × V ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ I ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × V ) ) ) | |
| 5 | bj-opelidb1 | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ I ↔ ( 𝑥 ∈ V ∧ 𝑥 = 𝑦 ) ) | |
| 6 | 5 | simprbi | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ I → 𝑥 = 𝑦 ) |
| 7 | opelxp1 | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × V ) → 𝑥 ∈ 𝐴 ) | |
| 8 | simpr | ⊢ ( ( 𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 9 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 10 | 9 | biimpa | ⊢ ( ( 𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
| 11 | 8 10 | jca | ⊢ ( ( 𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) |
| 12 | 6 7 11 | syl2an | ⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ I ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × V ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) |
| 13 | 4 12 | sylbi | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( I ∩ ( 𝐴 × V ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) |
| 14 | opelxpi | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐴 ) ) | |
| 15 | 13 14 | syl | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( I ∩ ( 𝐴 × V ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐴 ) ) |
| 16 | 3 15 | relssi | ⊢ ( I ∩ ( 𝐴 × V ) ) ⊆ ( 𝐴 × 𝐴 ) |
| 17 | 2 16 | ssini | ⊢ ( I ∩ ( 𝐴 × V ) ) ⊆ ( I ∩ ( 𝐴 × 𝐴 ) ) |
| 18 | ssv | ⊢ 𝐴 ⊆ V | |
| 19 | xpss2 | ⊢ ( 𝐴 ⊆ V → ( 𝐴 × 𝐴 ) ⊆ ( 𝐴 × V ) ) | |
| 20 | sslin | ⊢ ( ( 𝐴 × 𝐴 ) ⊆ ( 𝐴 × V ) → ( I ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( I ∩ ( 𝐴 × V ) ) ) | |
| 21 | 18 19 20 | mp2b | ⊢ ( I ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( I ∩ ( 𝐴 × V ) ) |
| 22 | 17 21 | eqssi | ⊢ ( I ∩ ( 𝐴 × V ) ) = ( I ∩ ( 𝐴 × 𝐴 ) ) |
| 23 | 1 22 | eqtri | ⊢ ( I ↾ 𝐴 ) = ( I ∩ ( 𝐴 × 𝐴 ) ) |