Metamath Proof Explorer


Theorem bj-idres

Description: Alternate expression for the restricted identity relation. The advantage of that expression is to expose it as a "bounded" class, being included in the Cartesian square of the restricting class. (Contributed by BJ, 27-Dec-2023)

This is an alternate of idinxpresid (see idinxpres ). See also elrid and elidinxp . (Proof modification is discouraged.)

Ref Expression
Assertion bj-idres ( I ↾ 𝐴 ) = ( I ∩ ( 𝐴 × 𝐴 ) )

Proof

Step Hyp Ref Expression
1 df-res ( I ↾ 𝐴 ) = ( I ∩ ( 𝐴 × V ) )
2 inss1 ( I ∩ ( 𝐴 × V ) ) ⊆ I
3 relinxp Rel ( I ∩ ( 𝐴 × V ) )
4 elin ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( I ∩ ( 𝐴 × V ) ) ↔ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ I ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × V ) ) )
5 bj-opelidb1 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ I ↔ ( 𝑥 ∈ V ∧ 𝑥 = 𝑦 ) )
6 5 simprbi ( ⟨ 𝑥 , 𝑦 ⟩ ∈ I → 𝑥 = 𝑦 )
7 opelxp1 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × V ) → 𝑥𝐴 )
8 simpr ( ( 𝑥 = 𝑦𝑥𝐴 ) → 𝑥𝐴 )
9 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
10 9 biimpa ( ( 𝑥 = 𝑦𝑥𝐴 ) → 𝑦𝐴 )
11 8 10 jca ( ( 𝑥 = 𝑦𝑥𝐴 ) → ( 𝑥𝐴𝑦𝐴 ) )
12 6 7 11 syl2an ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ I ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × V ) ) → ( 𝑥𝐴𝑦𝐴 ) )
13 4 12 sylbi ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( I ∩ ( 𝐴 × V ) ) → ( 𝑥𝐴𝑦𝐴 ) )
14 opelxpi ( ( 𝑥𝐴𝑦𝐴 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐴 ) )
15 13 14 syl ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( I ∩ ( 𝐴 × V ) ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐴 ) )
16 3 15 relssi ( I ∩ ( 𝐴 × V ) ) ⊆ ( 𝐴 × 𝐴 )
17 2 16 ssini ( I ∩ ( 𝐴 × V ) ) ⊆ ( I ∩ ( 𝐴 × 𝐴 ) )
18 ssv 𝐴 ⊆ V
19 xpss2 ( 𝐴 ⊆ V → ( 𝐴 × 𝐴 ) ⊆ ( 𝐴 × V ) )
20 sslin ( ( 𝐴 × 𝐴 ) ⊆ ( 𝐴 × V ) → ( I ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( I ∩ ( 𝐴 × V ) ) )
21 18 19 20 mp2b ( I ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( I ∩ ( 𝐴 × V ) )
22 17 21 eqssi ( I ∩ ( 𝐴 × V ) ) = ( I ∩ ( 𝐴 × 𝐴 ) )
23 1 22 eqtri ( I ↾ 𝐴 ) = ( I ∩ ( 𝐴 × 𝐴 ) )