Step |
Hyp |
Ref |
Expression |
1 |
|
bj-idres |
|- ( _I |` V ) = ( _I i^i ( V X. V ) ) |
2 |
1
|
eleq2i |
|- ( <. A , B >. e. ( _I |` V ) <-> <. A , B >. e. ( _I i^i ( V X. V ) ) ) |
3 |
|
elin |
|- ( <. A , B >. e. ( _I i^i ( V X. V ) ) <-> ( <. A , B >. e. _I /\ <. A , B >. e. ( V X. V ) ) ) |
4 |
|
inex1g |
|- ( A e. V -> ( A i^i B ) e. _V ) |
5 |
|
bj-opelid |
|- ( ( A i^i B ) e. _V -> ( <. A , B >. e. _I <-> A = B ) ) |
6 |
4 5
|
syl |
|- ( A e. V -> ( <. A , B >. e. _I <-> A = B ) ) |
7 |
|
opelxp |
|- ( <. A , B >. e. ( V X. V ) <-> ( A e. V /\ B e. V ) ) |
8 |
7
|
a1i |
|- ( A e. V -> ( <. A , B >. e. ( V X. V ) <-> ( A e. V /\ B e. V ) ) ) |
9 |
6 8
|
anbi12d |
|- ( A e. V -> ( ( <. A , B >. e. _I /\ <. A , B >. e. ( V X. V ) ) <-> ( A = B /\ ( A e. V /\ B e. V ) ) ) ) |
10 |
|
simpl |
|- ( ( A = B /\ ( A e. V /\ B e. V ) ) -> A = B ) |
11 |
|
eleq1 |
|- ( A = B -> ( A e. V <-> B e. V ) ) |
12 |
11
|
biimpcd |
|- ( A e. V -> ( A = B -> B e. V ) ) |
13 |
12
|
anc2li |
|- ( A e. V -> ( A = B -> ( A e. V /\ B e. V ) ) ) |
14 |
13
|
ancld |
|- ( A e. V -> ( A = B -> ( A = B /\ ( A e. V /\ B e. V ) ) ) ) |
15 |
10 14
|
impbid2 |
|- ( A e. V -> ( ( A = B /\ ( A e. V /\ B e. V ) ) <-> A = B ) ) |
16 |
9 15
|
bitrd |
|- ( A e. V -> ( ( <. A , B >. e. _I /\ <. A , B >. e. ( V X. V ) ) <-> A = B ) ) |
17 |
3 16
|
syl5bb |
|- ( A e. V -> ( <. A , B >. e. ( _I i^i ( V X. V ) ) <-> A = B ) ) |
18 |
2 17
|
syl5bb |
|- ( A e. V -> ( <. A , B >. e. ( _I |` V ) <-> A = B ) ) |