| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relcnv |  |-  Rel `' { <. x , y >. | ph } | 
						
							| 2 |  | relopabv |  |-  Rel { <. y , x >. | ph } | 
						
							| 3 |  | vopelopabsb |  |-  ( <. w , z >. e. { <. x , y >. | ph } <-> [ w / x ] [ z / y ] ph ) | 
						
							| 4 |  | sbcom2 |  |-  ( [ w / x ] [ z / y ] ph <-> [ z / y ] [ w / x ] ph ) | 
						
							| 5 | 3 4 | bitri |  |-  ( <. w , z >. e. { <. x , y >. | ph } <-> [ z / y ] [ w / x ] ph ) | 
						
							| 6 |  | vex |  |-  z e. _V | 
						
							| 7 |  | vex |  |-  w e. _V | 
						
							| 8 | 6 7 | opelcnv |  |-  ( <. z , w >. e. `' { <. x , y >. | ph } <-> <. w , z >. e. { <. x , y >. | ph } ) | 
						
							| 9 |  | vopelopabsb |  |-  ( <. z , w >. e. { <. y , x >. | ph } <-> [ z / y ] [ w / x ] ph ) | 
						
							| 10 | 5 8 9 | 3bitr4i |  |-  ( <. z , w >. e. `' { <. x , y >. | ph } <-> <. z , w >. e. { <. y , x >. | ph } ) | 
						
							| 11 | 1 2 10 | eqrelriiv |  |-  `' { <. x , y >. | ph } = { <. y , x >. | ph } |