Metamath Proof Explorer


Theorem connsubclo

Description: If a clopen set meets a connected subspace, it must contain the entire subspace. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypotheses connsubclo.1
|- X = U. J
connsubclo.3
|- ( ph -> A C_ X )
connsubclo.4
|- ( ph -> ( J |`t A ) e. Conn )
connsubclo.5
|- ( ph -> B e. J )
connsubclo.6
|- ( ph -> ( B i^i A ) =/= (/) )
connsubclo.7
|- ( ph -> B e. ( Clsd ` J ) )
Assertion connsubclo
|- ( ph -> A C_ B )

Proof

Step Hyp Ref Expression
1 connsubclo.1
 |-  X = U. J
2 connsubclo.3
 |-  ( ph -> A C_ X )
3 connsubclo.4
 |-  ( ph -> ( J |`t A ) e. Conn )
4 connsubclo.5
 |-  ( ph -> B e. J )
5 connsubclo.6
 |-  ( ph -> ( B i^i A ) =/= (/) )
6 connsubclo.7
 |-  ( ph -> B e. ( Clsd ` J ) )
7 eqid
 |-  U. ( J |`t A ) = U. ( J |`t A )
8 cldrcl
 |-  ( B e. ( Clsd ` J ) -> J e. Top )
9 6 8 syl
 |-  ( ph -> J e. Top )
10 1 topopn
 |-  ( J e. Top -> X e. J )
11 9 10 syl
 |-  ( ph -> X e. J )
12 11 2 ssexd
 |-  ( ph -> A e. _V )
13 elrestr
 |-  ( ( J e. Top /\ A e. _V /\ B e. J ) -> ( B i^i A ) e. ( J |`t A ) )
14 9 12 4 13 syl3anc
 |-  ( ph -> ( B i^i A ) e. ( J |`t A ) )
15 eqid
 |-  ( B i^i A ) = ( B i^i A )
16 ineq1
 |-  ( x = B -> ( x i^i A ) = ( B i^i A ) )
17 16 rspceeqv
 |-  ( ( B e. ( Clsd ` J ) /\ ( B i^i A ) = ( B i^i A ) ) -> E. x e. ( Clsd ` J ) ( B i^i A ) = ( x i^i A ) )
18 6 15 17 sylancl
 |-  ( ph -> E. x e. ( Clsd ` J ) ( B i^i A ) = ( x i^i A ) )
19 1 restcld
 |-  ( ( J e. Top /\ A C_ X ) -> ( ( B i^i A ) e. ( Clsd ` ( J |`t A ) ) <-> E. x e. ( Clsd ` J ) ( B i^i A ) = ( x i^i A ) ) )
20 9 2 19 syl2anc
 |-  ( ph -> ( ( B i^i A ) e. ( Clsd ` ( J |`t A ) ) <-> E. x e. ( Clsd ` J ) ( B i^i A ) = ( x i^i A ) ) )
21 18 20 mpbird
 |-  ( ph -> ( B i^i A ) e. ( Clsd ` ( J |`t A ) ) )
22 7 3 14 5 21 connclo
 |-  ( ph -> ( B i^i A ) = U. ( J |`t A ) )
23 1 restuni
 |-  ( ( J e. Top /\ A C_ X ) -> A = U. ( J |`t A ) )
24 9 2 23 syl2anc
 |-  ( ph -> A = U. ( J |`t A ) )
25 22 24 eqtr4d
 |-  ( ph -> ( B i^i A ) = A )
26 sseqin2
 |-  ( A C_ B <-> ( B i^i A ) = A )
27 25 26 sylibr
 |-  ( ph -> A C_ B )