| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> W e. Word V ) |
| 2 |
|
elfzelz |
|- ( N e. ( 1 ... ( # ` W ) ) -> N e. ZZ ) |
| 3 |
2
|
adantl |
|- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> N e. ZZ ) |
| 4 |
|
elfz1b |
|- ( N e. ( 1 ... ( # ` W ) ) <-> ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) ) |
| 5 |
|
simp2 |
|- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( # ` W ) e. NN ) |
| 6 |
4 5
|
sylbi |
|- ( N e. ( 1 ... ( # ` W ) ) -> ( # ` W ) e. NN ) |
| 7 |
6
|
adantl |
|- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( # ` W ) e. NN ) |
| 8 |
|
fzo0end |
|- ( ( # ` W ) e. NN -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 9 |
7 8
|
syl |
|- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 10 |
|
cshwidxmod |
|- ( ( W e. Word V /\ N e. ZZ /\ ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( # ` W ) - 1 ) ) = ( W ` ( ( ( ( # ` W ) - 1 ) + N ) mod ( # ` W ) ) ) ) |
| 11 |
1 3 9 10
|
syl3anc |
|- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( # ` W ) - 1 ) ) = ( W ` ( ( ( ( # ` W ) - 1 ) + N ) mod ( # ` W ) ) ) ) |
| 12 |
|
nncn |
|- ( ( # ` W ) e. NN -> ( # ` W ) e. CC ) |
| 13 |
12
|
adantl |
|- ( ( N e. NN /\ ( # ` W ) e. NN ) -> ( # ` W ) e. CC ) |
| 14 |
|
1cnd |
|- ( ( N e. NN /\ ( # ` W ) e. NN ) -> 1 e. CC ) |
| 15 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 16 |
15
|
adantr |
|- ( ( N e. NN /\ ( # ` W ) e. NN ) -> N e. CC ) |
| 17 |
13 14 16
|
3jca |
|- ( ( N e. NN /\ ( # ` W ) e. NN ) -> ( ( # ` W ) e. CC /\ 1 e. CC /\ N e. CC ) ) |
| 18 |
17
|
3adant3 |
|- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( ( # ` W ) e. CC /\ 1 e. CC /\ N e. CC ) ) |
| 19 |
4 18
|
sylbi |
|- ( N e. ( 1 ... ( # ` W ) ) -> ( ( # ` W ) e. CC /\ 1 e. CC /\ N e. CC ) ) |
| 20 |
|
subadd23 |
|- ( ( ( # ` W ) e. CC /\ 1 e. CC /\ N e. CC ) -> ( ( ( # ` W ) - 1 ) + N ) = ( ( # ` W ) + ( N - 1 ) ) ) |
| 21 |
19 20
|
syl |
|- ( N e. ( 1 ... ( # ` W ) ) -> ( ( ( # ` W ) - 1 ) + N ) = ( ( # ` W ) + ( N - 1 ) ) ) |
| 22 |
21
|
oveq1d |
|- ( N e. ( 1 ... ( # ` W ) ) -> ( ( ( ( # ` W ) - 1 ) + N ) mod ( # ` W ) ) = ( ( ( # ` W ) + ( N - 1 ) ) mod ( # ` W ) ) ) |
| 23 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 24 |
23
|
3ad2ant1 |
|- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( N - 1 ) e. NN0 ) |
| 25 |
|
simp3 |
|- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> N <_ ( # ` W ) ) |
| 26 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
| 27 |
|
nnz |
|- ( ( # ` W ) e. NN -> ( # ` W ) e. ZZ ) |
| 28 |
26 27
|
anim12i |
|- ( ( N e. NN /\ ( # ` W ) e. NN ) -> ( N e. ZZ /\ ( # ` W ) e. ZZ ) ) |
| 29 |
28
|
3adant3 |
|- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( N e. ZZ /\ ( # ` W ) e. ZZ ) ) |
| 30 |
|
zlem1lt |
|- ( ( N e. ZZ /\ ( # ` W ) e. ZZ ) -> ( N <_ ( # ` W ) <-> ( N - 1 ) < ( # ` W ) ) ) |
| 31 |
29 30
|
syl |
|- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( N <_ ( # ` W ) <-> ( N - 1 ) < ( # ` W ) ) ) |
| 32 |
25 31
|
mpbid |
|- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( N - 1 ) < ( # ` W ) ) |
| 33 |
24 5 32
|
3jca |
|- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( ( N - 1 ) e. NN0 /\ ( # ` W ) e. NN /\ ( N - 1 ) < ( # ` W ) ) ) |
| 34 |
4 33
|
sylbi |
|- ( N e. ( 1 ... ( # ` W ) ) -> ( ( N - 1 ) e. NN0 /\ ( # ` W ) e. NN /\ ( N - 1 ) < ( # ` W ) ) ) |
| 35 |
|
addmodid |
|- ( ( ( N - 1 ) e. NN0 /\ ( # ` W ) e. NN /\ ( N - 1 ) < ( # ` W ) ) -> ( ( ( # ` W ) + ( N - 1 ) ) mod ( # ` W ) ) = ( N - 1 ) ) |
| 36 |
34 35
|
syl |
|- ( N e. ( 1 ... ( # ` W ) ) -> ( ( ( # ` W ) + ( N - 1 ) ) mod ( # ` W ) ) = ( N - 1 ) ) |
| 37 |
22 36
|
eqtrd |
|- ( N e. ( 1 ... ( # ` W ) ) -> ( ( ( ( # ` W ) - 1 ) + N ) mod ( # ` W ) ) = ( N - 1 ) ) |
| 38 |
37
|
fveq2d |
|- ( N e. ( 1 ... ( # ` W ) ) -> ( W ` ( ( ( ( # ` W ) - 1 ) + N ) mod ( # ` W ) ) ) = ( W ` ( N - 1 ) ) ) |
| 39 |
38
|
adantl |
|- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( W ` ( ( ( ( # ` W ) - 1 ) + N ) mod ( # ` W ) ) ) = ( W ` ( N - 1 ) ) ) |
| 40 |
11 39
|
eqtrd |
|- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( # ` W ) - 1 ) ) = ( W ` ( N - 1 ) ) ) |