| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cxpcnOLD.d |
|- D = ( CC \ ( -oo (,] 0 ) ) |
| 2 |
|
cxpcnOLD.j |
|- J = ( TopOpen ` CCfld ) |
| 3 |
|
cxpcnOLD.k |
|- K = ( J |`t D ) |
| 4 |
1
|
ellogdm |
|- ( x e. D <-> ( x e. CC /\ ( x e. RR -> x e. RR+ ) ) ) |
| 5 |
4
|
simplbi |
|- ( x e. D -> x e. CC ) |
| 6 |
5
|
adantr |
|- ( ( x e. D /\ y e. CC ) -> x e. CC ) |
| 7 |
1
|
logdmn0 |
|- ( x e. D -> x =/= 0 ) |
| 8 |
7
|
adantr |
|- ( ( x e. D /\ y e. CC ) -> x =/= 0 ) |
| 9 |
|
simpr |
|- ( ( x e. D /\ y e. CC ) -> y e. CC ) |
| 10 |
6 8 9
|
cxpefd |
|- ( ( x e. D /\ y e. CC ) -> ( x ^c y ) = ( exp ` ( y x. ( log ` x ) ) ) ) |
| 11 |
10
|
mpoeq3ia |
|- ( x e. D , y e. CC |-> ( x ^c y ) ) = ( x e. D , y e. CC |-> ( exp ` ( y x. ( log ` x ) ) ) ) |
| 12 |
2
|
cnfldtopon |
|- J e. ( TopOn ` CC ) |
| 13 |
12
|
a1i |
|- ( T. -> J e. ( TopOn ` CC ) ) |
| 14 |
5
|
ssriv |
|- D C_ CC |
| 15 |
|
resttopon |
|- ( ( J e. ( TopOn ` CC ) /\ D C_ CC ) -> ( J |`t D ) e. ( TopOn ` D ) ) |
| 16 |
13 14 15
|
sylancl |
|- ( T. -> ( J |`t D ) e. ( TopOn ` D ) ) |
| 17 |
3 16
|
eqeltrid |
|- ( T. -> K e. ( TopOn ` D ) ) |
| 18 |
17 13
|
cnmpt2nd |
|- ( T. -> ( x e. D , y e. CC |-> y ) e. ( ( K tX J ) Cn J ) ) |
| 19 |
|
fvres |
|- ( x e. D -> ( ( log |` D ) ` x ) = ( log ` x ) ) |
| 20 |
19
|
adantr |
|- ( ( x e. D /\ y e. CC ) -> ( ( log |` D ) ` x ) = ( log ` x ) ) |
| 21 |
20
|
mpoeq3ia |
|- ( x e. D , y e. CC |-> ( ( log |` D ) ` x ) ) = ( x e. D , y e. CC |-> ( log ` x ) ) |
| 22 |
17 13
|
cnmpt1st |
|- ( T. -> ( x e. D , y e. CC |-> x ) e. ( ( K tX J ) Cn K ) ) |
| 23 |
1
|
logcn |
|- ( log |` D ) e. ( D -cn-> CC ) |
| 24 |
|
ssid |
|- CC C_ CC |
| 25 |
12
|
toponrestid |
|- J = ( J |`t CC ) |
| 26 |
2 3 25
|
cncfcn |
|- ( ( D C_ CC /\ CC C_ CC ) -> ( D -cn-> CC ) = ( K Cn J ) ) |
| 27 |
14 24 26
|
mp2an |
|- ( D -cn-> CC ) = ( K Cn J ) |
| 28 |
23 27
|
eleqtri |
|- ( log |` D ) e. ( K Cn J ) |
| 29 |
28
|
a1i |
|- ( T. -> ( log |` D ) e. ( K Cn J ) ) |
| 30 |
17 13 22 29
|
cnmpt21f |
|- ( T. -> ( x e. D , y e. CC |-> ( ( log |` D ) ` x ) ) e. ( ( K tX J ) Cn J ) ) |
| 31 |
21 30
|
eqeltrrid |
|- ( T. -> ( x e. D , y e. CC |-> ( log ` x ) ) e. ( ( K tX J ) Cn J ) ) |
| 32 |
2
|
mulcn |
|- x. e. ( ( J tX J ) Cn J ) |
| 33 |
32
|
a1i |
|- ( T. -> x. e. ( ( J tX J ) Cn J ) ) |
| 34 |
17 13 18 31 33
|
cnmpt22f |
|- ( T. -> ( x e. D , y e. CC |-> ( y x. ( log ` x ) ) ) e. ( ( K tX J ) Cn J ) ) |
| 35 |
|
efcn |
|- exp e. ( CC -cn-> CC ) |
| 36 |
2
|
cncfcn1 |
|- ( CC -cn-> CC ) = ( J Cn J ) |
| 37 |
35 36
|
eleqtri |
|- exp e. ( J Cn J ) |
| 38 |
37
|
a1i |
|- ( T. -> exp e. ( J Cn J ) ) |
| 39 |
17 13 34 38
|
cnmpt21f |
|- ( T. -> ( x e. D , y e. CC |-> ( exp ` ( y x. ( log ` x ) ) ) ) e. ( ( K tX J ) Cn J ) ) |
| 40 |
39
|
mptru |
|- ( x e. D , y e. CC |-> ( exp ` ( y x. ( log ` x ) ) ) ) e. ( ( K tX J ) Cn J ) |
| 41 |
11 40
|
eqeltri |
|- ( x e. D , y e. CC |-> ( x ^c y ) ) e. ( ( K tX J ) Cn J ) |