Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalemc.l |
|- .<_ = ( le ` K ) |
3 |
|
dalemc.j |
|- .\/ = ( join ` K ) |
4 |
|
dalemc.a |
|- A = ( Atoms ` K ) |
5 |
|
dalem16.m |
|- ./\ = ( meet ` K ) |
6 |
|
dalem16.o |
|- O = ( LPlanes ` K ) |
7 |
|
dalem16.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
8 |
|
dalem16.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
9 |
|
dalem16.d |
|- D = ( ( P .\/ Q ) ./\ ( S .\/ T ) ) |
10 |
|
dalem16.e |
|- E = ( ( Q .\/ R ) ./\ ( T .\/ U ) ) |
11 |
|
dalem16.f |
|- F = ( ( R .\/ P ) ./\ ( U .\/ S ) ) |
12 |
|
eqid |
|- ( Y ./\ Z ) = ( Y ./\ Z ) |
13 |
1 2 3 4 5 6 7 8 12 11
|
dalem12 |
|- ( ph -> F .<_ ( Y ./\ Z ) ) |
14 |
13
|
adantr |
|- ( ( ph /\ Y =/= Z ) -> F .<_ ( Y ./\ Z ) ) |
15 |
1 2 3 4 5 6 7 8 12 9
|
dalem10 |
|- ( ph -> D .<_ ( Y ./\ Z ) ) |
16 |
1 2 3 4 5 6 7 8 12 10
|
dalem11 |
|- ( ph -> E .<_ ( Y ./\ Z ) ) |
17 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
18 |
1 2 3 4 5 6 7 8 9
|
dalemdea |
|- ( ph -> D e. A ) |
19 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
20 |
19 4
|
atbase |
|- ( D e. A -> D e. ( Base ` K ) ) |
21 |
18 20
|
syl |
|- ( ph -> D e. ( Base ` K ) ) |
22 |
1 2 3 4 5 6 7 8 10
|
dalemeea |
|- ( ph -> E e. A ) |
23 |
19 4
|
atbase |
|- ( E e. A -> E e. ( Base ` K ) ) |
24 |
22 23
|
syl |
|- ( ph -> E e. ( Base ` K ) ) |
25 |
1 6
|
dalemyeb |
|- ( ph -> Y e. ( Base ` K ) ) |
26 |
1
|
dalemzeo |
|- ( ph -> Z e. O ) |
27 |
19 6
|
lplnbase |
|- ( Z e. O -> Z e. ( Base ` K ) ) |
28 |
26 27
|
syl |
|- ( ph -> Z e. ( Base ` K ) ) |
29 |
19 5
|
latmcl |
|- ( ( K e. Lat /\ Y e. ( Base ` K ) /\ Z e. ( Base ` K ) ) -> ( Y ./\ Z ) e. ( Base ` K ) ) |
30 |
17 25 28 29
|
syl3anc |
|- ( ph -> ( Y ./\ Z ) e. ( Base ` K ) ) |
31 |
19 2 3
|
latjle12 |
|- ( ( K e. Lat /\ ( D e. ( Base ` K ) /\ E e. ( Base ` K ) /\ ( Y ./\ Z ) e. ( Base ` K ) ) ) -> ( ( D .<_ ( Y ./\ Z ) /\ E .<_ ( Y ./\ Z ) ) <-> ( D .\/ E ) .<_ ( Y ./\ Z ) ) ) |
32 |
17 21 24 30 31
|
syl13anc |
|- ( ph -> ( ( D .<_ ( Y ./\ Z ) /\ E .<_ ( Y ./\ Z ) ) <-> ( D .\/ E ) .<_ ( Y ./\ Z ) ) ) |
33 |
15 16 32
|
mpbi2and |
|- ( ph -> ( D .\/ E ) .<_ ( Y ./\ Z ) ) |
34 |
33
|
adantr |
|- ( ( ph /\ Y =/= Z ) -> ( D .\/ E ) .<_ ( Y ./\ Z ) ) |
35 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
36 |
35
|
adantr |
|- ( ( ph /\ Y =/= Z ) -> K e. HL ) |
37 |
1 2 3 4 5 6 7 8 9 10
|
dalemdnee |
|- ( ph -> D =/= E ) |
38 |
|
eqid |
|- ( LLines ` K ) = ( LLines ` K ) |
39 |
3 4 38
|
llni2 |
|- ( ( ( K e. HL /\ D e. A /\ E e. A ) /\ D =/= E ) -> ( D .\/ E ) e. ( LLines ` K ) ) |
40 |
35 18 22 37 39
|
syl31anc |
|- ( ph -> ( D .\/ E ) e. ( LLines ` K ) ) |
41 |
40
|
adantr |
|- ( ( ph /\ Y =/= Z ) -> ( D .\/ E ) e. ( LLines ` K ) ) |
42 |
1 2 3 4 5 38 6 7 8 12
|
dalem15 |
|- ( ( ph /\ Y =/= Z ) -> ( Y ./\ Z ) e. ( LLines ` K ) ) |
43 |
2 38
|
llncmp |
|- ( ( K e. HL /\ ( D .\/ E ) e. ( LLines ` K ) /\ ( Y ./\ Z ) e. ( LLines ` K ) ) -> ( ( D .\/ E ) .<_ ( Y ./\ Z ) <-> ( D .\/ E ) = ( Y ./\ Z ) ) ) |
44 |
36 41 42 43
|
syl3anc |
|- ( ( ph /\ Y =/= Z ) -> ( ( D .\/ E ) .<_ ( Y ./\ Z ) <-> ( D .\/ E ) = ( Y ./\ Z ) ) ) |
45 |
34 44
|
mpbid |
|- ( ( ph /\ Y =/= Z ) -> ( D .\/ E ) = ( Y ./\ Z ) ) |
46 |
14 45
|
breqtrrd |
|- ( ( ph /\ Y =/= Z ) -> F .<_ ( D .\/ E ) ) |