Step |
Hyp |
Ref |
Expression |
1 |
|
deg1z.d |
|- D = ( deg1 ` R ) |
2 |
|
deg1z.p |
|- P = ( Poly1 ` R ) |
3 |
|
deg1z.z |
|- .0. = ( 0g ` P ) |
4 |
|
deg1nn0cl.b |
|- B = ( Base ` P ) |
5 |
|
deg1ldg.y |
|- Y = ( 0g ` R ) |
6 |
|
deg1ldg.a |
|- A = ( coe1 ` F ) |
7 |
|
deg1ldgn.r |
|- ( ph -> R e. Ring ) |
8 |
|
deg1ldgn.f |
|- ( ph -> F e. B ) |
9 |
|
deg1ldgn.x |
|- ( ph -> X e. NN0 ) |
10 |
|
deg1ldgn.e |
|- ( ph -> ( A ` X ) = Y ) |
11 |
|
fveq2 |
|- ( ( D ` F ) = X -> ( A ` ( D ` F ) ) = ( A ` X ) ) |
12 |
11
|
adantl |
|- ( ( ph /\ ( D ` F ) = X ) -> ( A ` ( D ` F ) ) = ( A ` X ) ) |
13 |
7
|
adantr |
|- ( ( ph /\ ( D ` F ) = X ) -> R e. Ring ) |
14 |
8
|
adantr |
|- ( ( ph /\ ( D ` F ) = X ) -> F e. B ) |
15 |
|
eleq1a |
|- ( X e. NN0 -> ( ( D ` F ) = X -> ( D ` F ) e. NN0 ) ) |
16 |
9 15
|
syl |
|- ( ph -> ( ( D ` F ) = X -> ( D ` F ) e. NN0 ) ) |
17 |
16
|
imp |
|- ( ( ph /\ ( D ` F ) = X ) -> ( D ` F ) e. NN0 ) |
18 |
1 2 3 4
|
deg1nn0clb |
|- ( ( R e. Ring /\ F e. B ) -> ( F =/= .0. <-> ( D ` F ) e. NN0 ) ) |
19 |
7 8 18
|
syl2anc |
|- ( ph -> ( F =/= .0. <-> ( D ` F ) e. NN0 ) ) |
20 |
19
|
adantr |
|- ( ( ph /\ ( D ` F ) = X ) -> ( F =/= .0. <-> ( D ` F ) e. NN0 ) ) |
21 |
17 20
|
mpbird |
|- ( ( ph /\ ( D ` F ) = X ) -> F =/= .0. ) |
22 |
1 2 3 4 5 6
|
deg1ldg |
|- ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( A ` ( D ` F ) ) =/= Y ) |
23 |
13 14 21 22
|
syl3anc |
|- ( ( ph /\ ( D ` F ) = X ) -> ( A ` ( D ` F ) ) =/= Y ) |
24 |
12 23
|
eqnetrrd |
|- ( ( ph /\ ( D ` F ) = X ) -> ( A ` X ) =/= Y ) |
25 |
24
|
ex |
|- ( ph -> ( ( D ` F ) = X -> ( A ` X ) =/= Y ) ) |
26 |
25
|
necon2d |
|- ( ph -> ( ( A ` X ) = Y -> ( D ` F ) =/= X ) ) |
27 |
10 26
|
mpd |
|- ( ph -> ( D ` F ) =/= X ) |