| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfimafnf.1 |
|- F/_ x A |
| 2 |
|
dfimafnf.2 |
|- F/_ x F |
| 3 |
|
dfima2 |
|- ( F " A ) = { y | E. z e. A z F y } |
| 4 |
|
ssel |
|- ( A C_ dom F -> ( z e. A -> z e. dom F ) ) |
| 5 |
|
eqcom |
|- ( ( F ` z ) = y <-> y = ( F ` z ) ) |
| 6 |
|
funbrfvb |
|- ( ( Fun F /\ z e. dom F ) -> ( ( F ` z ) = y <-> z F y ) ) |
| 7 |
5 6
|
bitr3id |
|- ( ( Fun F /\ z e. dom F ) -> ( y = ( F ` z ) <-> z F y ) ) |
| 8 |
7
|
ex |
|- ( Fun F -> ( z e. dom F -> ( y = ( F ` z ) <-> z F y ) ) ) |
| 9 |
4 8
|
syl9r |
|- ( Fun F -> ( A C_ dom F -> ( z e. A -> ( y = ( F ` z ) <-> z F y ) ) ) ) |
| 10 |
9
|
imp31 |
|- ( ( ( Fun F /\ A C_ dom F ) /\ z e. A ) -> ( y = ( F ` z ) <-> z F y ) ) |
| 11 |
10
|
rexbidva |
|- ( ( Fun F /\ A C_ dom F ) -> ( E. z e. A y = ( F ` z ) <-> E. z e. A z F y ) ) |
| 12 |
11
|
abbidv |
|- ( ( Fun F /\ A C_ dom F ) -> { y | E. z e. A y = ( F ` z ) } = { y | E. z e. A z F y } ) |
| 13 |
3 12
|
eqtr4id |
|- ( ( Fun F /\ A C_ dom F ) -> ( F " A ) = { y | E. z e. A y = ( F ` z ) } ) |
| 14 |
|
nfcv |
|- F/_ z A |
| 15 |
|
nfcv |
|- F/_ x z |
| 16 |
2 15
|
nffv |
|- F/_ x ( F ` z ) |
| 17 |
16
|
nfeq2 |
|- F/ x y = ( F ` z ) |
| 18 |
|
nfv |
|- F/ z y = ( F ` x ) |
| 19 |
|
fveq2 |
|- ( z = x -> ( F ` z ) = ( F ` x ) ) |
| 20 |
19
|
eqeq2d |
|- ( z = x -> ( y = ( F ` z ) <-> y = ( F ` x ) ) ) |
| 21 |
14 1 17 18 20
|
cbvrexfw |
|- ( E. z e. A y = ( F ` z ) <-> E. x e. A y = ( F ` x ) ) |
| 22 |
21
|
abbii |
|- { y | E. z e. A y = ( F ` z ) } = { y | E. x e. A y = ( F ` x ) } |
| 23 |
13 22
|
eqtrdi |
|- ( ( Fun F /\ A C_ dom F ) -> ( F " A ) = { y | E. x e. A y = ( F ` x ) } ) |