Metamath Proof Explorer


Theorem dfmember3

Description: Alternate definition of the membership equivalence relation. (Contributed by Peter Mazsa, 26-Sep-2021) (Revised by Peter Mazsa, 17-Jul-2023)

Ref Expression
Assertion dfmember3
|- ( MembEr A <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) )

Proof

Step Hyp Ref Expression
1 dfmember2
 |-  ( MembEr A <-> ( EqvRel ~ A /\ ( dom ~ A /. ~ A ) = A ) )
2 dfcoeleqvrel
 |-  ( CoElEqvRel A <-> EqvRel ~ A )
3 2 bicomi
 |-  ( EqvRel ~ A <-> CoElEqvRel A )
4 dmqscoelseq
 |-  ( ( dom ~ A /. ~ A ) = A <-> ( U. A /. ~ A ) = A )
5 3 4 anbi12i
 |-  ( ( EqvRel ~ A /\ ( dom ~ A /. ~ A ) = A ) <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) )
6 1 5 bitri
 |-  ( MembEr A <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) )