Description: Alternate definition of the membership equivalence relation. (Contributed by Peter Mazsa, 26-Sep-2021) (Revised by Peter Mazsa, 17-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | dfmember3 | |- ( MembEr A <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfmember2 | |- ( MembEr A <-> ( EqvRel ~ A /\ ( dom ~ A /. ~ A ) = A ) ) |
|
2 | dfcoeleqvrel | |- ( CoElEqvRel A <-> EqvRel ~ A ) |
|
3 | 2 | bicomi | |- ( EqvRel ~ A <-> CoElEqvRel A ) |
4 | dmqscoelseq | |- ( ( dom ~ A /. ~ A ) = A <-> ( U. A /. ~ A ) = A ) |
|
5 | 3 4 | anbi12i | |- ( ( EqvRel ~ A /\ ( dom ~ A /. ~ A ) = A ) <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) ) |
6 | 1 5 | bitri | |- ( MembEr A <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) ) |