Metamath Proof Explorer


Theorem dfmember3

Description: Alternate definition of the membership equivalence relation. (Contributed by Peter Mazsa, 26-Sep-2021) (Revised by Peter Mazsa, 17-Jul-2023)

Ref Expression
Assertion dfmember3 ( MembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 dfmember2 ( MembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ ( dom ∼ 𝐴 /𝐴 ) = 𝐴 ) )
2 dfcoeleqvrel ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴 )
3 2 bicomi ( EqvRel ∼ 𝐴 ↔ CoElEqvRel 𝐴 )
4 dmqscoelseq ( ( dom ∼ 𝐴 /𝐴 ) = 𝐴 ↔ ( 𝐴 /𝐴 ) = 𝐴 )
5 3 4 anbi12i ( ( EqvRel ∼ 𝐴 ∧ ( dom ∼ 𝐴 /𝐴 ) = 𝐴 ) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴 ) = 𝐴 ) )
6 1 5 bitri ( MembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴 ) = 𝐴 ) )