Description: Alternate definition of the membership equivalence relation. (Contributed by Peter Mazsa, 26-Sep-2021) (Revised by Peter Mazsa, 17-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | dfmember3 | ⊢ ( MembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfmember2 | ⊢ ( MembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ ( dom ∼ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ) | |
2 | dfcoeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴 ) | |
3 | 2 | bicomi | ⊢ ( EqvRel ∼ 𝐴 ↔ CoElEqvRel 𝐴 ) |
4 | dmqscoelseq | ⊢ ( ( dom ∼ 𝐴 / ∼ 𝐴 ) = 𝐴 ↔ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) | |
5 | 3 4 | anbi12i | ⊢ ( ( EqvRel ∼ 𝐴 ∧ ( dom ∼ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ↔ ( CoElEqvRel 𝐴 ∧ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ) |
6 | 1 5 | bitri | ⊢ ( MembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ) |