| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Base ` ( S (+)m R ) ) = ( Base ` ( S (+)m R ) ) |
| 2 |
1
|
dsmmval2 |
|- ( S (+)m R ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) |
| 3 |
|
eqid |
|- ( S Xs_ R ) = ( S Xs_ R ) |
| 4 |
|
eqid |
|- ( Base ` ( S Xs_ R ) ) = ( Base ` ( S Xs_ R ) ) |
| 5 |
|
noel |
|- -. f e. (/) |
| 6 |
|
reldmprds |
|- Rel dom Xs_ |
| 7 |
6
|
ovprc1 |
|- ( -. S e. _V -> ( S Xs_ R ) = (/) ) |
| 8 |
7
|
fveq2d |
|- ( -. S e. _V -> ( Base ` ( S Xs_ R ) ) = ( Base ` (/) ) ) |
| 9 |
|
base0 |
|- (/) = ( Base ` (/) ) |
| 10 |
8 9
|
eqtr4di |
|- ( -. S e. _V -> ( Base ` ( S Xs_ R ) ) = (/) ) |
| 11 |
10
|
eleq2d |
|- ( -. S e. _V -> ( f e. ( Base ` ( S Xs_ R ) ) <-> f e. (/) ) ) |
| 12 |
5 11
|
mtbiri |
|- ( -. S e. _V -> -. f e. ( Base ` ( S Xs_ R ) ) ) |
| 13 |
12
|
con4i |
|- ( f e. ( Base ` ( S Xs_ R ) ) -> S e. _V ) |
| 14 |
13
|
adantl |
|- ( ( ( R Fn I /\ I e. Fin ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> S e. _V ) |
| 15 |
|
simplr |
|- ( ( ( R Fn I /\ I e. Fin ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> I e. Fin ) |
| 16 |
|
simpll |
|- ( ( ( R Fn I /\ I e. Fin ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> R Fn I ) |
| 17 |
|
simpr |
|- ( ( ( R Fn I /\ I e. Fin ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> f e. ( Base ` ( S Xs_ R ) ) ) |
| 18 |
3 4 14 15 16 17
|
prdsbasfn |
|- ( ( ( R Fn I /\ I e. Fin ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> f Fn I ) |
| 19 |
18
|
fndmd |
|- ( ( ( R Fn I /\ I e. Fin ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> dom f = I ) |
| 20 |
19 15
|
eqeltrd |
|- ( ( ( R Fn I /\ I e. Fin ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> dom f e. Fin ) |
| 21 |
|
difss |
|- ( f \ ( 0g o. R ) ) C_ f |
| 22 |
|
dmss |
|- ( ( f \ ( 0g o. R ) ) C_ f -> dom ( f \ ( 0g o. R ) ) C_ dom f ) |
| 23 |
21 22
|
ax-mp |
|- dom ( f \ ( 0g o. R ) ) C_ dom f |
| 24 |
|
ssfi |
|- ( ( dom f e. Fin /\ dom ( f \ ( 0g o. R ) ) C_ dom f ) -> dom ( f \ ( 0g o. R ) ) e. Fin ) |
| 25 |
20 23 24
|
sylancl |
|- ( ( ( R Fn I /\ I e. Fin ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> dom ( f \ ( 0g o. R ) ) e. Fin ) |
| 26 |
25
|
ralrimiva |
|- ( ( R Fn I /\ I e. Fin ) -> A. f e. ( Base ` ( S Xs_ R ) ) dom ( f \ ( 0g o. R ) ) e. Fin ) |
| 27 |
|
rabid2 |
|- ( ( Base ` ( S Xs_ R ) ) = { f e. ( Base ` ( S Xs_ R ) ) | dom ( f \ ( 0g o. R ) ) e. Fin } <-> A. f e. ( Base ` ( S Xs_ R ) ) dom ( f \ ( 0g o. R ) ) e. Fin ) |
| 28 |
26 27
|
sylibr |
|- ( ( R Fn I /\ I e. Fin ) -> ( Base ` ( S Xs_ R ) ) = { f e. ( Base ` ( S Xs_ R ) ) | dom ( f \ ( 0g o. R ) ) e. Fin } ) |
| 29 |
|
eqid |
|- { f e. ( Base ` ( S Xs_ R ) ) | dom ( f \ ( 0g o. R ) ) e. Fin } = { f e. ( Base ` ( S Xs_ R ) ) | dom ( f \ ( 0g o. R ) ) e. Fin } |
| 30 |
3 29
|
dsmmbas2 |
|- ( ( R Fn I /\ I e. Fin ) -> { f e. ( Base ` ( S Xs_ R ) ) | dom ( f \ ( 0g o. R ) ) e. Fin } = ( Base ` ( S (+)m R ) ) ) |
| 31 |
28 30
|
eqtr2d |
|- ( ( R Fn I /\ I e. Fin ) -> ( Base ` ( S (+)m R ) ) = ( Base ` ( S Xs_ R ) ) ) |
| 32 |
31
|
oveq2d |
|- ( ( R Fn I /\ I e. Fin ) -> ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) = ( ( S Xs_ R ) |`s ( Base ` ( S Xs_ R ) ) ) ) |
| 33 |
|
ovex |
|- ( S Xs_ R ) e. _V |
| 34 |
4
|
ressid |
|- ( ( S Xs_ R ) e. _V -> ( ( S Xs_ R ) |`s ( Base ` ( S Xs_ R ) ) ) = ( S Xs_ R ) ) |
| 35 |
33 34
|
ax-mp |
|- ( ( S Xs_ R ) |`s ( Base ` ( S Xs_ R ) ) ) = ( S Xs_ R ) |
| 36 |
32 35
|
eqtrdi |
|- ( ( R Fn I /\ I e. Fin ) -> ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) = ( S Xs_ R ) ) |
| 37 |
2 36
|
eqtrid |
|- ( ( R Fn I /\ I e. Fin ) -> ( S (+)m R ) = ( S Xs_ R ) ) |