Metamath Proof Explorer


Theorem dsmmfi

Description: For finite products, the direct sum is just the module product. See also the observation in Lang p. 129. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion dsmmfi R Fn I I Fin S m R = S 𝑠 R

Proof

Step Hyp Ref Expression
1 eqid Base S m R = Base S m R
2 1 dsmmval2 S m R = S 𝑠 R 𝑠 Base S m R
3 eqid S 𝑠 R = S 𝑠 R
4 eqid Base S 𝑠 R = Base S 𝑠 R
5 noel ¬ f
6 reldmprds Rel dom 𝑠
7 6 ovprc1 ¬ S V S 𝑠 R =
8 7 fveq2d ¬ S V Base S 𝑠 R = Base
9 base0 = Base
10 8 9 eqtr4di ¬ S V Base S 𝑠 R =
11 10 eleq2d ¬ S V f Base S 𝑠 R f
12 5 11 mtbiri ¬ S V ¬ f Base S 𝑠 R
13 12 con4i f Base S 𝑠 R S V
14 13 adantl R Fn I I Fin f Base S 𝑠 R S V
15 simplr R Fn I I Fin f Base S 𝑠 R I Fin
16 simpll R Fn I I Fin f Base S 𝑠 R R Fn I
17 simpr R Fn I I Fin f Base S 𝑠 R f Base S 𝑠 R
18 3 4 14 15 16 17 prdsbasfn R Fn I I Fin f Base S 𝑠 R f Fn I
19 18 fndmd R Fn I I Fin f Base S 𝑠 R dom f = I
20 19 15 eqeltrd R Fn I I Fin f Base S 𝑠 R dom f Fin
21 difss f 0 𝑔 R f
22 dmss f 0 𝑔 R f dom f 0 𝑔 R dom f
23 21 22 ax-mp dom f 0 𝑔 R dom f
24 ssfi dom f Fin dom f 0 𝑔 R dom f dom f 0 𝑔 R Fin
25 20 23 24 sylancl R Fn I I Fin f Base S 𝑠 R dom f 0 𝑔 R Fin
26 25 ralrimiva R Fn I I Fin f Base S 𝑠 R dom f 0 𝑔 R Fin
27 rabid2 Base S 𝑠 R = f Base S 𝑠 R | dom f 0 𝑔 R Fin f Base S 𝑠 R dom f 0 𝑔 R Fin
28 26 27 sylibr R Fn I I Fin Base S 𝑠 R = f Base S 𝑠 R | dom f 0 𝑔 R Fin
29 eqid f Base S 𝑠 R | dom f 0 𝑔 R Fin = f Base S 𝑠 R | dom f 0 𝑔 R Fin
30 3 29 dsmmbas2 R Fn I I Fin f Base S 𝑠 R | dom f 0 𝑔 R Fin = Base S m R
31 28 30 eqtr2d R Fn I I Fin Base S m R = Base S 𝑠 R
32 31 oveq2d R Fn I I Fin S 𝑠 R 𝑠 Base S m R = S 𝑠 R 𝑠 Base S 𝑠 R
33 ovex S 𝑠 R V
34 4 ressid S 𝑠 R V S 𝑠 R 𝑠 Base S 𝑠 R = S 𝑠 R
35 33 34 ax-mp S 𝑠 R 𝑠 Base S 𝑠 R = S 𝑠 R
36 32 35 eqtrdi R Fn I I Fin S 𝑠 R 𝑠 Base S m R = S 𝑠 R
37 2 36 syl5eq R Fn I I Fin S m R = S 𝑠 R