| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvgt0.a |
|- ( ph -> A e. RR ) |
| 2 |
|
dvgt0.b |
|- ( ph -> B e. RR ) |
| 3 |
|
dvgt0.f |
|- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
| 4 |
|
dvgt0lem.d |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> S ) |
| 5 |
|
dvgt0lem.o |
|- O Or RR |
| 6 |
|
dvgt0lem.i |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` x ) O ( F ` y ) ) |
| 7 |
6
|
ex |
|- ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( x < y -> ( F ` x ) O ( F ` y ) ) ) |
| 8 |
7
|
ralrimivva |
|- ( ph -> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x < y -> ( F ` x ) O ( F ` y ) ) ) |
| 9 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 10 |
1 2 9
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 11 |
|
ltso |
|- < Or RR |
| 12 |
|
soss |
|- ( ( A [,] B ) C_ RR -> ( < Or RR -> < Or ( A [,] B ) ) ) |
| 13 |
10 11 12
|
mpisyl |
|- ( ph -> < Or ( A [,] B ) ) |
| 14 |
5
|
a1i |
|- ( ph -> O Or RR ) |
| 15 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
| 16 |
3 15
|
syl |
|- ( ph -> F : ( A [,] B ) --> RR ) |
| 17 |
|
ssidd |
|- ( ph -> ( A [,] B ) C_ ( A [,] B ) ) |
| 18 |
|
soisores |
|- ( ( ( < Or ( A [,] B ) /\ O Or RR ) /\ ( F : ( A [,] B ) --> RR /\ ( A [,] B ) C_ ( A [,] B ) ) ) -> ( ( F |` ( A [,] B ) ) Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) <-> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x < y -> ( F ` x ) O ( F ` y ) ) ) ) |
| 19 |
13 14 16 17 18
|
syl22anc |
|- ( ph -> ( ( F |` ( A [,] B ) ) Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) <-> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x < y -> ( F ` x ) O ( F ` y ) ) ) ) |
| 20 |
8 19
|
mpbird |
|- ( ph -> ( F |` ( A [,] B ) ) Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) ) |
| 21 |
|
ffn |
|- ( F : ( A [,] B ) --> RR -> F Fn ( A [,] B ) ) |
| 22 |
3 15 21
|
3syl |
|- ( ph -> F Fn ( A [,] B ) ) |
| 23 |
|
fnresdm |
|- ( F Fn ( A [,] B ) -> ( F |` ( A [,] B ) ) = F ) |
| 24 |
|
isoeq1 |
|- ( ( F |` ( A [,] B ) ) = F -> ( ( F |` ( A [,] B ) ) Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) <-> F Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) ) ) |
| 25 |
22 23 24
|
3syl |
|- ( ph -> ( ( F |` ( A [,] B ) ) Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) <-> F Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) ) ) |
| 26 |
20 25
|
mpbid |
|- ( ph -> F Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) ) |
| 27 |
|
fnima |
|- ( F Fn ( A [,] B ) -> ( F " ( A [,] B ) ) = ran F ) |
| 28 |
|
isoeq5 |
|- ( ( F " ( A [,] B ) ) = ran F -> ( F Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) <-> F Isom < , O ( ( A [,] B ) , ran F ) ) ) |
| 29 |
22 27 28
|
3syl |
|- ( ph -> ( F Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) <-> F Isom < , O ( ( A [,] B ) , ran F ) ) ) |
| 30 |
26 29
|
mpbid |
|- ( ph -> F Isom < , O ( ( A [,] B ) , ran F ) ) |