Metamath Proof Explorer


Theorem dvgt0lem2

Description: Lemma for dvgt0 and dvlt0 . (Contributed by Mario Carneiro, 19-Feb-2015)

Ref Expression
Hypotheses dvgt0.a φA
dvgt0.b φB
dvgt0.f φF:ABcn
dvgt0lem.d φF:ABS
dvgt0lem.o OOr
dvgt0lem.i φxAByABx<yFxOFy
Assertion dvgt0lem2 φFIsom<,OABranF

Proof

Step Hyp Ref Expression
1 dvgt0.a φA
2 dvgt0.b φB
3 dvgt0.f φF:ABcn
4 dvgt0lem.d φF:ABS
5 dvgt0lem.o OOr
6 dvgt0lem.i φxAByABx<yFxOFy
7 6 ex φxAByABx<yFxOFy
8 7 ralrimivva φxAByABx<yFxOFy
9 iccssre ABAB
10 1 2 9 syl2anc φAB
11 ltso <Or
12 soss AB<Or<OrAB
13 10 11 12 mpisyl φ<OrAB
14 5 a1i φOOr
15 cncff F:ABcnF:AB
16 3 15 syl φF:AB
17 ssidd φABAB
18 soisores <OrABOOrF:ABABABFABIsom<,OABFABxAByABx<yFxOFy
19 13 14 16 17 18 syl22anc φFABIsom<,OABFABxAByABx<yFxOFy
20 8 19 mpbird φFABIsom<,OABFAB
21 ffn F:ABFFnAB
22 3 15 21 3syl φFFnAB
23 fnresdm FFnABFAB=F
24 isoeq1 FAB=FFABIsom<,OABFABFIsom<,OABFAB
25 22 23 24 3syl φFABIsom<,OABFABFIsom<,OABFAB
26 20 25 mpbid φFIsom<,OABFAB
27 fnima FFnABFAB=ranF
28 isoeq5 FAB=ranFFIsom<,OABFABFIsom<,OABranF
29 22 27 28 3syl φFIsom<,OABFABFIsom<,OABranF
30 26 29 mpbid φFIsom<,OABranF