| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( x = 0 -> ( ( RR Dn F ) ` x ) = ( ( RR Dn F ) ` 0 ) ) | 
						
							| 2 | 1 | dmeqd |  |-  ( x = 0 -> dom ( ( RR Dn F ) ` x ) = dom ( ( RR Dn F ) ` 0 ) ) | 
						
							| 3 | 1 2 | feq12d |  |-  ( x = 0 -> ( ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR <-> ( ( RR Dn F ) ` 0 ) : dom ( ( RR Dn F ) ` 0 ) --> RR ) ) | 
						
							| 4 | 3 | imbi2d |  |-  ( x = 0 -> ( ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR ) <-> ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` 0 ) : dom ( ( RR Dn F ) ` 0 ) --> RR ) ) ) | 
						
							| 5 |  | fveq2 |  |-  ( x = n -> ( ( RR Dn F ) ` x ) = ( ( RR Dn F ) ` n ) ) | 
						
							| 6 | 5 | dmeqd |  |-  ( x = n -> dom ( ( RR Dn F ) ` x ) = dom ( ( RR Dn F ) ` n ) ) | 
						
							| 7 | 5 6 | feq12d |  |-  ( x = n -> ( ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR <-> ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) | 
						
							| 8 | 7 | imbi2d |  |-  ( x = n -> ( ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR ) <-> ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) ) | 
						
							| 9 |  | fveq2 |  |-  ( x = ( n + 1 ) -> ( ( RR Dn F ) ` x ) = ( ( RR Dn F ) ` ( n + 1 ) ) ) | 
						
							| 10 | 9 | dmeqd |  |-  ( x = ( n + 1 ) -> dom ( ( RR Dn F ) ` x ) = dom ( ( RR Dn F ) ` ( n + 1 ) ) ) | 
						
							| 11 | 9 10 | feq12d |  |-  ( x = ( n + 1 ) -> ( ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR <-> ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR ) ) | 
						
							| 12 | 11 | imbi2d |  |-  ( x = ( n + 1 ) -> ( ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR ) <-> ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR ) ) ) | 
						
							| 13 |  | fveq2 |  |-  ( x = N -> ( ( RR Dn F ) ` x ) = ( ( RR Dn F ) ` N ) ) | 
						
							| 14 | 13 | dmeqd |  |-  ( x = N -> dom ( ( RR Dn F ) ` x ) = dom ( ( RR Dn F ) ` N ) ) | 
						
							| 15 | 13 14 | feq12d |  |-  ( x = N -> ( ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR <-> ( ( RR Dn F ) ` N ) : dom ( ( RR Dn F ) ` N ) --> RR ) ) | 
						
							| 16 | 15 | imbi2d |  |-  ( x = N -> ( ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR ) <-> ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` N ) : dom ( ( RR Dn F ) ` N ) --> RR ) ) ) | 
						
							| 17 |  | simpl |  |-  ( ( F : A --> RR /\ A C_ RR ) -> F : A --> RR ) | 
						
							| 18 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 19 |  | fss |  |-  ( ( F : A --> RR /\ RR C_ CC ) -> F : A --> CC ) | 
						
							| 20 | 18 19 | mpan2 |  |-  ( F : A --> RR -> F : A --> CC ) | 
						
							| 21 |  | cnex |  |-  CC e. _V | 
						
							| 22 |  | reex |  |-  RR e. _V | 
						
							| 23 |  | elpm2r |  |-  ( ( ( CC e. _V /\ RR e. _V ) /\ ( F : A --> CC /\ A C_ RR ) ) -> F e. ( CC ^pm RR ) ) | 
						
							| 24 | 21 22 23 | mpanl12 |  |-  ( ( F : A --> CC /\ A C_ RR ) -> F e. ( CC ^pm RR ) ) | 
						
							| 25 | 20 24 | sylan |  |-  ( ( F : A --> RR /\ A C_ RR ) -> F e. ( CC ^pm RR ) ) | 
						
							| 26 |  | dvn0 |  |-  ( ( RR C_ CC /\ F e. ( CC ^pm RR ) ) -> ( ( RR Dn F ) ` 0 ) = F ) | 
						
							| 27 | 18 25 26 | sylancr |  |-  ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` 0 ) = F ) | 
						
							| 28 | 27 | dmeqd |  |-  ( ( F : A --> RR /\ A C_ RR ) -> dom ( ( RR Dn F ) ` 0 ) = dom F ) | 
						
							| 29 |  | fdm |  |-  ( F : A --> RR -> dom F = A ) | 
						
							| 30 | 29 | adantr |  |-  ( ( F : A --> RR /\ A C_ RR ) -> dom F = A ) | 
						
							| 31 | 28 30 | eqtrd |  |-  ( ( F : A --> RR /\ A C_ RR ) -> dom ( ( RR Dn F ) ` 0 ) = A ) | 
						
							| 32 | 27 31 | feq12d |  |-  ( ( F : A --> RR /\ A C_ RR ) -> ( ( ( RR Dn F ) ` 0 ) : dom ( ( RR Dn F ) ` 0 ) --> RR <-> F : A --> RR ) ) | 
						
							| 33 | 17 32 | mpbird |  |-  ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` 0 ) : dom ( ( RR Dn F ) ` 0 ) --> RR ) | 
						
							| 34 |  | simprr |  |-  ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) | 
						
							| 35 | 22 | prid1 |  |-  RR e. { RR , CC } | 
						
							| 36 |  | simprl |  |-  ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> n e. NN0 ) | 
						
							| 37 |  | dvnbss |  |-  ( ( RR e. { RR , CC } /\ F e. ( CC ^pm RR ) /\ n e. NN0 ) -> dom ( ( RR Dn F ) ` n ) C_ dom F ) | 
						
							| 38 | 35 25 36 37 | mp3an2ani |  |-  ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> dom ( ( RR Dn F ) ` n ) C_ dom F ) | 
						
							| 39 | 30 | adantr |  |-  ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> dom F = A ) | 
						
							| 40 | 38 39 | sseqtrd |  |-  ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> dom ( ( RR Dn F ) ` n ) C_ A ) | 
						
							| 41 |  | simplr |  |-  ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> A C_ RR ) | 
						
							| 42 | 40 41 | sstrd |  |-  ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> dom ( ( RR Dn F ) ` n ) C_ RR ) | 
						
							| 43 |  | dvfre |  |-  ( ( ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR /\ dom ( ( RR Dn F ) ` n ) C_ RR ) -> ( RR _D ( ( RR Dn F ) ` n ) ) : dom ( RR _D ( ( RR Dn F ) ` n ) ) --> RR ) | 
						
							| 44 | 34 42 43 | syl2anc |  |-  ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> ( RR _D ( ( RR Dn F ) ` n ) ) : dom ( RR _D ( ( RR Dn F ) ` n ) ) --> RR ) | 
						
							| 45 |  | dvnp1 |  |-  ( ( RR C_ CC /\ F e. ( CC ^pm RR ) /\ n e. NN0 ) -> ( ( RR Dn F ) ` ( n + 1 ) ) = ( RR _D ( ( RR Dn F ) ` n ) ) ) | 
						
							| 46 | 18 25 36 45 | mp3an2ani |  |-  ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> ( ( RR Dn F ) ` ( n + 1 ) ) = ( RR _D ( ( RR Dn F ) ` n ) ) ) | 
						
							| 47 | 46 | dmeqd |  |-  ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> dom ( ( RR Dn F ) ` ( n + 1 ) ) = dom ( RR _D ( ( RR Dn F ) ` n ) ) ) | 
						
							| 48 | 46 47 | feq12d |  |-  ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> ( ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR <-> ( RR _D ( ( RR Dn F ) ` n ) ) : dom ( RR _D ( ( RR Dn F ) ` n ) ) --> RR ) ) | 
						
							| 49 | 44 48 | mpbird |  |-  ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR ) | 
						
							| 50 | 49 | expr |  |-  ( ( ( F : A --> RR /\ A C_ RR ) /\ n e. NN0 ) -> ( ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR -> ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR ) ) | 
						
							| 51 | 50 | expcom |  |-  ( n e. NN0 -> ( ( F : A --> RR /\ A C_ RR ) -> ( ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR -> ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR ) ) ) | 
						
							| 52 | 51 | a2d |  |-  ( n e. NN0 -> ( ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) -> ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR ) ) ) | 
						
							| 53 | 4 8 12 16 33 52 | nn0ind |  |-  ( N e. NN0 -> ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` N ) : dom ( ( RR Dn F ) ` N ) --> RR ) ) | 
						
							| 54 | 53 | com12 |  |-  ( ( F : A --> RR /\ A C_ RR ) -> ( N e. NN0 -> ( ( RR Dn F ) ` N ) : dom ( ( RR Dn F ) ` N ) --> RR ) ) | 
						
							| 55 | 54 | 3impia |  |-  ( ( F : A --> RR /\ A C_ RR /\ N e. NN0 ) -> ( ( RR Dn F ) ` N ) : dom ( ( RR Dn F ) ` N ) --> RR ) |