| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑥  =  0  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 )  =  ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) ) | 
						
							| 2 | 1 | dmeqd | ⊢ ( 𝑥  =  0  →  dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 )  =  dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) ) | 
						
							| 3 | 1 2 | feq12d | ⊢ ( 𝑥  =  0  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 ) ⟶ ℝ  ↔  ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) ⟶ ℝ ) ) | 
						
							| 4 | 3 | imbi2d | ⊢ ( 𝑥  =  0  →  ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 ) ⟶ ℝ )  ↔  ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) ⟶ ℝ ) ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑥  =  𝑛  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 )  =  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ) | 
						
							| 6 | 5 | dmeqd | ⊢ ( 𝑥  =  𝑛  →  dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 )  =  dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ) | 
						
							| 7 | 5 6 | feq12d | ⊢ ( 𝑥  =  𝑛  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 ) ⟶ ℝ  ↔  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) | 
						
							| 8 | 7 | imbi2d | ⊢ ( 𝑥  =  𝑛  →  ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 ) ⟶ ℝ )  ↔  ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 )  =  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 10 | 9 | dmeqd | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 )  =  dom  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 11 | 9 10 | feq12d | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 ) ⟶ ℝ  ↔  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑛  +  1 ) ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑛  +  1 ) ) ⟶ ℝ ) ) | 
						
							| 12 | 11 | imbi2d | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 ) ⟶ ℝ )  ↔  ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑛  +  1 ) ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑛  +  1 ) ) ⟶ ℝ ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑥  =  𝑁  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 )  =  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 14 | 13 | dmeqd | ⊢ ( 𝑥  =  𝑁  →  dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 )  =  dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 15 | 13 14 | feq12d | ⊢ ( 𝑥  =  𝑁  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 ) ⟶ ℝ  ↔  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑁 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( 𝑥  =  𝑁  →  ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑥 ) ⟶ ℝ )  ↔  ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑁 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) ) ) | 
						
							| 17 |  | simpl | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 18 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 19 |  | fss | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  ℝ  ⊆  ℂ )  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 20 | 18 19 | mpan2 | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 21 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 22 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 23 |  | elpm2r | ⊢ ( ( ( ℂ  ∈  V  ∧  ℝ  ∈  V )  ∧  ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐴  ⊆  ℝ ) )  →  𝐹  ∈  ( ℂ  ↑pm  ℝ ) ) | 
						
							| 24 | 21 22 23 | mpanl12 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐴  ⊆  ℝ )  →  𝐹  ∈  ( ℂ  ↑pm  ℝ ) ) | 
						
							| 25 | 20 24 | sylan | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  𝐹  ∈  ( ℂ  ↑pm  ℝ ) ) | 
						
							| 26 |  | dvn0 | ⊢ ( ( ℝ  ⊆  ℂ  ∧  𝐹  ∈  ( ℂ  ↑pm  ℝ ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 0 )  =  𝐹 ) | 
						
							| 27 | 18 25 26 | sylancr | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 0 )  =  𝐹 ) | 
						
							| 28 | 27 | dmeqd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 0 )  =  dom  𝐹 ) | 
						
							| 29 |  | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ  →  dom  𝐹  =  𝐴 ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  dom  𝐹  =  𝐴 ) | 
						
							| 31 | 28 30 | eqtrd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 0 )  =  𝐴 ) | 
						
							| 32 | 27 31 | feq12d | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) ⟶ ℝ  ↔  𝐹 : 𝐴 ⟶ ℝ ) ) | 
						
							| 33 | 17 32 | mpbird | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) ⟶ ℝ ) | 
						
							| 34 |  | simprr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  ( 𝑛  ∈  ℕ0  ∧  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) | 
						
							| 35 | 22 | prid1 | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 36 |  | simprl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  ( 𝑛  ∈  ℕ0  ∧  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 37 |  | dvnbss | ⊢ ( ( ℝ  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ℂ  ↑pm  ℝ )  ∧  𝑛  ∈  ℕ0 )  →  dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 )  ⊆  dom  𝐹 ) | 
						
							| 38 | 35 25 36 37 | mp3an2ani | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  ( 𝑛  ∈  ℕ0  ∧  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) )  →  dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 )  ⊆  dom  𝐹 ) | 
						
							| 39 | 30 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  ( 𝑛  ∈  ℕ0  ∧  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) )  →  dom  𝐹  =  𝐴 ) | 
						
							| 40 | 38 39 | sseqtrd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  ( 𝑛  ∈  ℕ0  ∧  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) )  →  dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 )  ⊆  𝐴 ) | 
						
							| 41 |  | simplr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  ( 𝑛  ∈  ℕ0  ∧  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) )  →  𝐴  ⊆  ℝ ) | 
						
							| 42 | 40 41 | sstrd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  ( 𝑛  ∈  ℕ0  ∧  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) )  →  dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 )  ⊆  ℝ ) | 
						
							| 43 |  | dvfre | ⊢ ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ⟶ ℝ  ∧  dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 )  ⊆  ℝ )  →  ( ℝ  D  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ) : dom  ( ℝ  D  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ) ⟶ ℝ ) | 
						
							| 44 | 34 42 43 | syl2anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  ( 𝑛  ∈  ℕ0  ∧  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) )  →  ( ℝ  D  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ) : dom  ( ℝ  D  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ) ⟶ ℝ ) | 
						
							| 45 |  | dvnp1 | ⊢ ( ( ℝ  ⊆  ℂ  ∧  𝐹  ∈  ( ℂ  ↑pm  ℝ )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  ( ℝ  D  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ) ) | 
						
							| 46 | 18 25 36 45 | mp3an2ani | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  ( 𝑛  ∈  ℕ0  ∧  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  ( ℝ  D  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ) ) | 
						
							| 47 | 46 | dmeqd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  ( 𝑛  ∈  ℕ0  ∧  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) )  →  dom  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  dom  ( ℝ  D  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ) ) | 
						
							| 48 | 46 47 | feq12d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  ( 𝑛  ∈  ℕ0  ∧  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑛  +  1 ) ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑛  +  1 ) ) ⟶ ℝ  ↔  ( ℝ  D  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ) : dom  ( ℝ  D  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ) ⟶ ℝ ) ) | 
						
							| 49 | 44 48 | mpbird | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  ( 𝑛  ∈  ℕ0  ∧  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑛  +  1 ) ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑛  +  1 ) ) ⟶ ℝ ) | 
						
							| 50 | 49 | expr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ⟶ ℝ  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑛  +  1 ) ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑛  +  1 ) ) ⟶ ℝ ) ) | 
						
							| 51 | 50 | expcom | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ⟶ ℝ  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑛  +  1 ) ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑛  +  1 ) ) ⟶ ℝ ) ) ) | 
						
							| 52 | 51 | a2d | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑛 ) ⟶ ℝ )  →  ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑛  +  1 ) ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑛  +  1 ) ) ⟶ ℝ ) ) ) | 
						
							| 53 | 4 8 12 16 33 52 | nn0ind | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑁 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) ) | 
						
							| 54 | 53 | com12 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  ( 𝑁  ∈  ℕ0  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑁 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) ) | 
						
							| 55 | 54 | 3impia | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ  ∧  𝑁  ∈  ℕ0 )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑁 ) : dom  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) |