Metamath Proof Explorer


Theorem dvnfre

Description: The N -th derivative of a real function is real. (Contributed by Mario Carneiro, 1-Jan-2017)

Ref Expression
Assertion dvnfre ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℝ )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑥 = 0 → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) )
2 1 dmeqd ( 𝑥 = 0 → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) )
3 1 2 feq12d ( 𝑥 = 0 → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ↔ ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ⟶ ℝ ) )
4 3 imbi2d ( 𝑥 = 0 → ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ) ↔ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ⟶ ℝ ) ) )
5 fveq2 ( 𝑥 = 𝑛 → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) )
6 5 dmeqd ( 𝑥 = 𝑛 → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) )
7 5 6 feq12d ( 𝑥 = 𝑛 → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ↔ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) )
8 7 imbi2d ( 𝑥 = 𝑛 → ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ) ↔ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) )
9 fveq2 ( 𝑥 = ( 𝑛 + 1 ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) )
10 9 dmeqd ( 𝑥 = ( 𝑛 + 1 ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) )
11 9 10 feq12d ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ↔ ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ) )
12 11 imbi2d ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ) ↔ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ) ) )
13 fveq2 ( 𝑥 = 𝑁 → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) )
14 13 dmeqd ( 𝑥 = 𝑁 → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) )
15 13 14 feq12d ( 𝑥 = 𝑁 → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ↔ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) )
16 15 imbi2d ( 𝑥 = 𝑁 → ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ) ↔ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) ) )
17 simpl ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → 𝐹 : 𝐴 ⟶ ℝ )
18 ax-resscn ℝ ⊆ ℂ
19 fss ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ )
20 18 19 mpan2 ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 : 𝐴 ⟶ ℂ )
21 cnex ℂ ∈ V
22 reex ℝ ∈ V
23 elpm2r ( ( ( ℂ ∈ V ∧ ℝ ∈ V ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) )
24 21 22 23 mpanl12 ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) )
25 20 24 sylan ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) )
26 dvn0 ( ( ℝ ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm ℝ ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) = 𝐹 )
27 18 25 26 sylancr ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) = 𝐹 )
28 27 dmeqd ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) = dom 𝐹 )
29 fdm ( 𝐹 : 𝐴 ⟶ ℝ → dom 𝐹 = 𝐴 )
30 29 adantr ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → dom 𝐹 = 𝐴 )
31 28 30 eqtrd ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) = 𝐴 )
32 27 31 feq12d ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ⟶ ℝ ↔ 𝐹 : 𝐴 ⟶ ℝ ) )
33 17 32 mpbird ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ⟶ ℝ )
34 simprr ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ )
35 22 prid1 ℝ ∈ { ℝ , ℂ }
36 simprl ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → 𝑛 ∈ ℕ0 )
37 dvnbss ( ( ℝ ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑛 ∈ ℕ0 ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ dom 𝐹 )
38 35 25 36 37 mp3an2ani ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ dom 𝐹 )
39 30 adantr ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → dom 𝐹 = 𝐴 )
40 38 39 sseqtrd ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ 𝐴 )
41 simplr ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → 𝐴 ⊆ ℝ )
42 40 41 sstrd ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ ℝ )
43 dvfre ( ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ∧ dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ ℝ ) → ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) : dom ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⟶ ℝ )
44 34 42 43 syl2anc ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) : dom ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⟶ ℝ )
45 dvnp1 ( ( ℝ ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) )
46 18 25 36 45 mp3an2ani ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) )
47 46 dmeqd ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) )
48 46 47 feq12d ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ↔ ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) : dom ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⟶ ℝ ) )
49 44 48 mpbird ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ )
50 49 expr ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ) )
51 50 expcom ( 𝑛 ∈ ℕ0 → ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ) ) )
52 51 a2d ( 𝑛 ∈ ℕ0 → ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) → ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ) ) )
53 4 8 12 16 33 52 nn0ind ( 𝑁 ∈ ℕ0 → ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) )
54 53 com12 ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( 𝑁 ∈ ℕ0 → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) )
55 54 3impia ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℝ )