| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvnmptconst.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
dvnmptconst.x |
|- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 3 |
|
dvnmptconst.a |
|- ( ph -> A e. CC ) |
| 4 |
|
dvnmptconst.n |
|- ( ph -> N e. NN ) |
| 5 |
|
id |
|- ( ph -> ph ) |
| 6 |
|
fveq2 |
|- ( n = 1 -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( ( S Dn ( x e. X |-> A ) ) ` 1 ) ) |
| 7 |
6
|
eqeq1d |
|- ( n = 1 -> ( ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> 0 ) <-> ( ( S Dn ( x e. X |-> A ) ) ` 1 ) = ( x e. X |-> 0 ) ) ) |
| 8 |
7
|
imbi2d |
|- ( n = 1 -> ( ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> 0 ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` 1 ) = ( x e. X |-> 0 ) ) ) ) |
| 9 |
|
fveq2 |
|- ( n = m -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( ( S Dn ( x e. X |-> A ) ) ` m ) ) |
| 10 |
9
|
eqeq1d |
|- ( n = m -> ( ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> 0 ) <-> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) ) |
| 11 |
10
|
imbi2d |
|- ( n = m -> ( ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> 0 ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) ) ) |
| 12 |
|
fveq2 |
|- ( n = ( m + 1 ) -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( ( S Dn ( x e. X |-> A ) ) ` ( m + 1 ) ) ) |
| 13 |
12
|
eqeq1d |
|- ( n = ( m + 1 ) -> ( ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> 0 ) <-> ( ( S Dn ( x e. X |-> A ) ) ` ( m + 1 ) ) = ( x e. X |-> 0 ) ) ) |
| 14 |
13
|
imbi2d |
|- ( n = ( m + 1 ) -> ( ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> 0 ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` ( m + 1 ) ) = ( x e. X |-> 0 ) ) ) ) |
| 15 |
|
fveq2 |
|- ( n = N -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( ( S Dn ( x e. X |-> A ) ) ` N ) ) |
| 16 |
15
|
eqeq1d |
|- ( n = N -> ( ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> 0 ) <-> ( ( S Dn ( x e. X |-> A ) ) ` N ) = ( x e. X |-> 0 ) ) ) |
| 17 |
16
|
imbi2d |
|- ( n = N -> ( ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> 0 ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` N ) = ( x e. X |-> 0 ) ) ) ) |
| 18 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 19 |
1 18
|
syl |
|- ( ph -> S C_ CC ) |
| 20 |
3
|
adantr |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
| 21 |
|
restsspw |
|- ( ( TopOpen ` CCfld ) |`t S ) C_ ~P S |
| 22 |
21 2
|
sselid |
|- ( ph -> X e. ~P S ) |
| 23 |
|
elpwi |
|- ( X e. ~P S -> X C_ S ) |
| 24 |
22 23
|
syl |
|- ( ph -> X C_ S ) |
| 25 |
|
cnex |
|- CC e. _V |
| 26 |
25
|
a1i |
|- ( ph -> CC e. _V ) |
| 27 |
20 24 26 1
|
mptelpm |
|- ( ph -> ( x e. X |-> A ) e. ( CC ^pm S ) ) |
| 28 |
|
dvn1 |
|- ( ( S C_ CC /\ ( x e. X |-> A ) e. ( CC ^pm S ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` 1 ) = ( S _D ( x e. X |-> A ) ) ) |
| 29 |
19 27 28
|
syl2anc |
|- ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` 1 ) = ( S _D ( x e. X |-> A ) ) ) |
| 30 |
1 2 3
|
dvmptconst |
|- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> 0 ) ) |
| 31 |
29 30
|
eqtrd |
|- ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` 1 ) = ( x e. X |-> 0 ) ) |
| 32 |
|
simp3 |
|- ( ( m e. NN /\ ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) /\ ph ) -> ph ) |
| 33 |
|
simp1 |
|- ( ( m e. NN /\ ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) /\ ph ) -> m e. NN ) |
| 34 |
|
simpr |
|- ( ( ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) /\ ph ) -> ph ) |
| 35 |
|
simpl |
|- ( ( ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) /\ ph ) -> ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) ) |
| 36 |
|
pm3.35 |
|- ( ( ph /\ ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) |
| 37 |
34 35 36
|
syl2anc |
|- ( ( ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) /\ ph ) -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) |
| 38 |
37
|
3adant1 |
|- ( ( m e. NN /\ ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) /\ ph ) -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) |
| 39 |
19
|
3ad2ant1 |
|- ( ( ph /\ m e. NN /\ ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) -> S C_ CC ) |
| 40 |
27
|
3ad2ant1 |
|- ( ( ph /\ m e. NN /\ ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) -> ( x e. X |-> A ) e. ( CC ^pm S ) ) |
| 41 |
|
nnnn0 |
|- ( m e. NN -> m e. NN0 ) |
| 42 |
41
|
3ad2ant2 |
|- ( ( ph /\ m e. NN /\ ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) -> m e. NN0 ) |
| 43 |
|
dvnp1 |
|- ( ( S C_ CC /\ ( x e. X |-> A ) e. ( CC ^pm S ) /\ m e. NN0 ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( m + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> A ) ) ` m ) ) ) |
| 44 |
39 40 42 43
|
syl3anc |
|- ( ( ph /\ m e. NN /\ ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( m + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> A ) ) ` m ) ) ) |
| 45 |
|
oveq2 |
|- ( ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) -> ( S _D ( ( S Dn ( x e. X |-> A ) ) ` m ) ) = ( S _D ( x e. X |-> 0 ) ) ) |
| 46 |
45
|
3ad2ant3 |
|- ( ( ph /\ m e. NN /\ ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) -> ( S _D ( ( S Dn ( x e. X |-> A ) ) ` m ) ) = ( S _D ( x e. X |-> 0 ) ) ) |
| 47 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
| 48 |
1 2 47
|
dvmptconst |
|- ( ph -> ( S _D ( x e. X |-> 0 ) ) = ( x e. X |-> 0 ) ) |
| 49 |
48
|
3ad2ant1 |
|- ( ( ph /\ m e. NN /\ ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) -> ( S _D ( x e. X |-> 0 ) ) = ( x e. X |-> 0 ) ) |
| 50 |
44 46 49
|
3eqtrd |
|- ( ( ph /\ m e. NN /\ ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( m + 1 ) ) = ( x e. X |-> 0 ) ) |
| 51 |
32 33 38 50
|
syl3anc |
|- ( ( m e. NN /\ ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) /\ ph ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( m + 1 ) ) = ( x e. X |-> 0 ) ) |
| 52 |
51
|
3exp |
|- ( m e. NN -> ( ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) -> ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` ( m + 1 ) ) = ( x e. X |-> 0 ) ) ) ) |
| 53 |
8 11 14 17 31 52
|
nnind |
|- ( N e. NN -> ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` N ) = ( x e. X |-> 0 ) ) ) |
| 54 |
4 5 53
|
sylc |
|- ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` N ) = ( x e. X |-> 0 ) ) |