| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efi4p.1 |
|- F = ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) |
| 2 |
|
ax-icn |
|- _i e. CC |
| 3 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 4 |
2 3
|
mpan |
|- ( A e. CC -> ( _i x. A ) e. CC ) |
| 5 |
1
|
ef4p |
|- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) = ( ( ( ( 1 + ( _i x. A ) ) + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |
| 6 |
4 5
|
syl |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( ( ( 1 + ( _i x. A ) ) + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |
| 7 |
|
ax-1cn |
|- 1 e. CC |
| 8 |
|
addcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
| 9 |
7 4 8
|
sylancr |
|- ( A e. CC -> ( 1 + ( _i x. A ) ) e. CC ) |
| 10 |
4
|
sqcld |
|- ( A e. CC -> ( ( _i x. A ) ^ 2 ) e. CC ) |
| 11 |
10
|
halfcld |
|- ( A e. CC -> ( ( ( _i x. A ) ^ 2 ) / 2 ) e. CC ) |
| 12 |
|
3nn0 |
|- 3 e. NN0 |
| 13 |
|
expcl |
|- ( ( ( _i x. A ) e. CC /\ 3 e. NN0 ) -> ( ( _i x. A ) ^ 3 ) e. CC ) |
| 14 |
4 12 13
|
sylancl |
|- ( A e. CC -> ( ( _i x. A ) ^ 3 ) e. CC ) |
| 15 |
|
6cn |
|- 6 e. CC |
| 16 |
|
6re |
|- 6 e. RR |
| 17 |
|
6pos |
|- 0 < 6 |
| 18 |
16 17
|
gt0ne0ii |
|- 6 =/= 0 |
| 19 |
|
divcl |
|- ( ( ( ( _i x. A ) ^ 3 ) e. CC /\ 6 e. CC /\ 6 =/= 0 ) -> ( ( ( _i x. A ) ^ 3 ) / 6 ) e. CC ) |
| 20 |
15 18 19
|
mp3an23 |
|- ( ( ( _i x. A ) ^ 3 ) e. CC -> ( ( ( _i x. A ) ^ 3 ) / 6 ) e. CC ) |
| 21 |
14 20
|
syl |
|- ( A e. CC -> ( ( ( _i x. A ) ^ 3 ) / 6 ) e. CC ) |
| 22 |
9 11 21
|
addassd |
|- ( A e. CC -> ( ( ( 1 + ( _i x. A ) ) + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) = ( ( 1 + ( _i x. A ) ) + ( ( ( ( _i x. A ) ^ 2 ) / 2 ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) ) ) |
| 23 |
7
|
a1i |
|- ( A e. CC -> 1 e. CC ) |
| 24 |
23 4 11 21
|
add4d |
|- ( A e. CC -> ( ( 1 + ( _i x. A ) ) + ( ( ( ( _i x. A ) ^ 2 ) / 2 ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) ) = ( ( 1 + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( _i x. A ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) ) ) |
| 25 |
|
2nn0 |
|- 2 e. NN0 |
| 26 |
|
mulexp |
|- ( ( _i e. CC /\ A e. CC /\ 2 e. NN0 ) -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) |
| 27 |
2 25 26
|
mp3an13 |
|- ( A e. CC -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) |
| 28 |
|
i2 |
|- ( _i ^ 2 ) = -u 1 |
| 29 |
28
|
oveq1i |
|- ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = ( -u 1 x. ( A ^ 2 ) ) |
| 30 |
29
|
a1i |
|- ( A e. CC -> ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = ( -u 1 x. ( A ^ 2 ) ) ) |
| 31 |
|
sqcl |
|- ( A e. CC -> ( A ^ 2 ) e. CC ) |
| 32 |
31
|
mulm1d |
|- ( A e. CC -> ( -u 1 x. ( A ^ 2 ) ) = -u ( A ^ 2 ) ) |
| 33 |
27 30 32
|
3eqtrd |
|- ( A e. CC -> ( ( _i x. A ) ^ 2 ) = -u ( A ^ 2 ) ) |
| 34 |
33
|
oveq1d |
|- ( A e. CC -> ( ( ( _i x. A ) ^ 2 ) / 2 ) = ( -u ( A ^ 2 ) / 2 ) ) |
| 35 |
|
2cn |
|- 2 e. CC |
| 36 |
|
2ne0 |
|- 2 =/= 0 |
| 37 |
|
divneg |
|- ( ( ( A ^ 2 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( ( A ^ 2 ) / 2 ) = ( -u ( A ^ 2 ) / 2 ) ) |
| 38 |
35 36 37
|
mp3an23 |
|- ( ( A ^ 2 ) e. CC -> -u ( ( A ^ 2 ) / 2 ) = ( -u ( A ^ 2 ) / 2 ) ) |
| 39 |
31 38
|
syl |
|- ( A e. CC -> -u ( ( A ^ 2 ) / 2 ) = ( -u ( A ^ 2 ) / 2 ) ) |
| 40 |
34 39
|
eqtr4d |
|- ( A e. CC -> ( ( ( _i x. A ) ^ 2 ) / 2 ) = -u ( ( A ^ 2 ) / 2 ) ) |
| 41 |
40
|
oveq2d |
|- ( A e. CC -> ( 1 + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) = ( 1 + -u ( ( A ^ 2 ) / 2 ) ) ) |
| 42 |
31
|
halfcld |
|- ( A e. CC -> ( ( A ^ 2 ) / 2 ) e. CC ) |
| 43 |
|
negsub |
|- ( ( 1 e. CC /\ ( ( A ^ 2 ) / 2 ) e. CC ) -> ( 1 + -u ( ( A ^ 2 ) / 2 ) ) = ( 1 - ( ( A ^ 2 ) / 2 ) ) ) |
| 44 |
7 42 43
|
sylancr |
|- ( A e. CC -> ( 1 + -u ( ( A ^ 2 ) / 2 ) ) = ( 1 - ( ( A ^ 2 ) / 2 ) ) ) |
| 45 |
41 44
|
eqtrd |
|- ( A e. CC -> ( 1 + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) = ( 1 - ( ( A ^ 2 ) / 2 ) ) ) |
| 46 |
|
mulexp |
|- ( ( _i e. CC /\ A e. CC /\ 3 e. NN0 ) -> ( ( _i x. A ) ^ 3 ) = ( ( _i ^ 3 ) x. ( A ^ 3 ) ) ) |
| 47 |
2 12 46
|
mp3an13 |
|- ( A e. CC -> ( ( _i x. A ) ^ 3 ) = ( ( _i ^ 3 ) x. ( A ^ 3 ) ) ) |
| 48 |
|
i3 |
|- ( _i ^ 3 ) = -u _i |
| 49 |
48
|
oveq1i |
|- ( ( _i ^ 3 ) x. ( A ^ 3 ) ) = ( -u _i x. ( A ^ 3 ) ) |
| 50 |
47 49
|
eqtrdi |
|- ( A e. CC -> ( ( _i x. A ) ^ 3 ) = ( -u _i x. ( A ^ 3 ) ) ) |
| 51 |
50
|
oveq1d |
|- ( A e. CC -> ( ( ( _i x. A ) ^ 3 ) / 6 ) = ( ( -u _i x. ( A ^ 3 ) ) / 6 ) ) |
| 52 |
|
expcl |
|- ( ( A e. CC /\ 3 e. NN0 ) -> ( A ^ 3 ) e. CC ) |
| 53 |
12 52
|
mpan2 |
|- ( A e. CC -> ( A ^ 3 ) e. CC ) |
| 54 |
|
negicn |
|- -u _i e. CC |
| 55 |
15 18
|
pm3.2i |
|- ( 6 e. CC /\ 6 =/= 0 ) |
| 56 |
|
divass |
|- ( ( -u _i e. CC /\ ( A ^ 3 ) e. CC /\ ( 6 e. CC /\ 6 =/= 0 ) ) -> ( ( -u _i x. ( A ^ 3 ) ) / 6 ) = ( -u _i x. ( ( A ^ 3 ) / 6 ) ) ) |
| 57 |
54 55 56
|
mp3an13 |
|- ( ( A ^ 3 ) e. CC -> ( ( -u _i x. ( A ^ 3 ) ) / 6 ) = ( -u _i x. ( ( A ^ 3 ) / 6 ) ) ) |
| 58 |
53 57
|
syl |
|- ( A e. CC -> ( ( -u _i x. ( A ^ 3 ) ) / 6 ) = ( -u _i x. ( ( A ^ 3 ) / 6 ) ) ) |
| 59 |
|
divcl |
|- ( ( ( A ^ 3 ) e. CC /\ 6 e. CC /\ 6 =/= 0 ) -> ( ( A ^ 3 ) / 6 ) e. CC ) |
| 60 |
15 18 59
|
mp3an23 |
|- ( ( A ^ 3 ) e. CC -> ( ( A ^ 3 ) / 6 ) e. CC ) |
| 61 |
53 60
|
syl |
|- ( A e. CC -> ( ( A ^ 3 ) / 6 ) e. CC ) |
| 62 |
|
mulneg12 |
|- ( ( _i e. CC /\ ( ( A ^ 3 ) / 6 ) e. CC ) -> ( -u _i x. ( ( A ^ 3 ) / 6 ) ) = ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) |
| 63 |
2 61 62
|
sylancr |
|- ( A e. CC -> ( -u _i x. ( ( A ^ 3 ) / 6 ) ) = ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) |
| 64 |
51 58 63
|
3eqtrd |
|- ( A e. CC -> ( ( ( _i x. A ) ^ 3 ) / 6 ) = ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) |
| 65 |
64
|
oveq2d |
|- ( A e. CC -> ( ( _i x. A ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) = ( ( _i x. A ) + ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) ) |
| 66 |
61
|
negcld |
|- ( A e. CC -> -u ( ( A ^ 3 ) / 6 ) e. CC ) |
| 67 |
|
adddi |
|- ( ( _i e. CC /\ A e. CC /\ -u ( ( A ^ 3 ) / 6 ) e. CC ) -> ( _i x. ( A + -u ( ( A ^ 3 ) / 6 ) ) ) = ( ( _i x. A ) + ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) ) |
| 68 |
2 67
|
mp3an1 |
|- ( ( A e. CC /\ -u ( ( A ^ 3 ) / 6 ) e. CC ) -> ( _i x. ( A + -u ( ( A ^ 3 ) / 6 ) ) ) = ( ( _i x. A ) + ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) ) |
| 69 |
66 68
|
mpdan |
|- ( A e. CC -> ( _i x. ( A + -u ( ( A ^ 3 ) / 6 ) ) ) = ( ( _i x. A ) + ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) ) |
| 70 |
|
negsub |
|- ( ( A e. CC /\ ( ( A ^ 3 ) / 6 ) e. CC ) -> ( A + -u ( ( A ^ 3 ) / 6 ) ) = ( A - ( ( A ^ 3 ) / 6 ) ) ) |
| 71 |
61 70
|
mpdan |
|- ( A e. CC -> ( A + -u ( ( A ^ 3 ) / 6 ) ) = ( A - ( ( A ^ 3 ) / 6 ) ) ) |
| 72 |
71
|
oveq2d |
|- ( A e. CC -> ( _i x. ( A + -u ( ( A ^ 3 ) / 6 ) ) ) = ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) |
| 73 |
65 69 72
|
3eqtr2d |
|- ( A e. CC -> ( ( _i x. A ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) = ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) |
| 74 |
45 73
|
oveq12d |
|- ( A e. CC -> ( ( 1 + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( _i x. A ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) ) = ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) ) |
| 75 |
22 24 74
|
3eqtrd |
|- ( A e. CC -> ( ( ( 1 + ( _i x. A ) ) + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) = ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) ) |
| 76 |
75
|
oveq1d |
|- ( A e. CC -> ( ( ( ( 1 + ( _i x. A ) ) + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) = ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |
| 77 |
6 76
|
eqtrd |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |