| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) |
| 2 |
|
rpxr |
|- ( R e. RR+ -> R e. RR* ) |
| 3 |
2
|
ad2antrr |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> R e. RR* ) |
| 4 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
| 5 |
4
|
cnbl0 |
|- ( R e. RR* -> ( `' abs " ( 0 [,) R ) ) = ( 0 ( ball ` ( abs o. - ) ) R ) ) |
| 6 |
3 5
|
syl |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( `' abs " ( 0 [,) R ) ) = ( 0 ( ball ` ( abs o. - ) ) R ) ) |
| 7 |
1 6
|
eleqtrrd |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> A e. ( `' abs " ( 0 [,) R ) ) ) |
| 8 |
|
absf |
|- abs : CC --> RR |
| 9 |
|
ffn |
|- ( abs : CC --> RR -> abs Fn CC ) |
| 10 |
|
elpreima |
|- ( abs Fn CC -> ( A e. ( `' abs " ( 0 [,) R ) ) <-> ( A e. CC /\ ( abs ` A ) e. ( 0 [,) R ) ) ) ) |
| 11 |
8 9 10
|
mp2b |
|- ( A e. ( `' abs " ( 0 [,) R ) ) <-> ( A e. CC /\ ( abs ` A ) e. ( 0 [,) R ) ) ) |
| 12 |
11
|
simplbi |
|- ( A e. ( `' abs " ( 0 [,) R ) ) -> A e. CC ) |
| 13 |
7 12
|
syl |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> A e. CC ) |
| 14 |
13
|
imcld |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( Im ` A ) e. RR ) |
| 15 |
14
|
recnd |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( Im ` A ) e. CC ) |
| 16 |
15
|
abscld |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` ( Im ` A ) ) e. RR ) |
| 17 |
|
rpre |
|- ( R e. RR+ -> R e. RR ) |
| 18 |
17
|
ad2antrr |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> R e. RR ) |
| 19 |
|
pire |
|- _pi e. RR |
| 20 |
19
|
a1i |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> _pi e. RR ) |
| 21 |
13
|
abscld |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` A ) e. RR ) |
| 22 |
|
absimle |
|- ( A e. CC -> ( abs ` ( Im ` A ) ) <_ ( abs ` A ) ) |
| 23 |
13 22
|
syl |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` ( Im ` A ) ) <_ ( abs ` A ) ) |
| 24 |
11
|
simprbi |
|- ( A e. ( `' abs " ( 0 [,) R ) ) -> ( abs ` A ) e. ( 0 [,) R ) ) |
| 25 |
7 24
|
syl |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` A ) e. ( 0 [,) R ) ) |
| 26 |
|
0re |
|- 0 e. RR |
| 27 |
|
elico2 |
|- ( ( 0 e. RR /\ R e. RR* ) -> ( ( abs ` A ) e. ( 0 [,) R ) <-> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) /\ ( abs ` A ) < R ) ) ) |
| 28 |
26 3 27
|
sylancr |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( ( abs ` A ) e. ( 0 [,) R ) <-> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) /\ ( abs ` A ) < R ) ) ) |
| 29 |
25 28
|
mpbid |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) /\ ( abs ` A ) < R ) ) |
| 30 |
29
|
simp3d |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` A ) < R ) |
| 31 |
16 21 18 23 30
|
lelttrd |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` ( Im ` A ) ) < R ) |
| 32 |
|
simplr |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> R < _pi ) |
| 33 |
16 18 20 31 32
|
lttrd |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` ( Im ` A ) ) < _pi ) |