Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
|
rpxr |
|
3 |
2
|
ad2antrr |
|
4 |
|
eqid |
|
5 |
4
|
cnbl0 |
|
6 |
3 5
|
syl |
|
7 |
1 6
|
eleqtrrd |
|
8 |
|
absf |
|
9 |
|
ffn |
|
10 |
|
elpreima |
|
11 |
8 9 10
|
mp2b |
|
12 |
11
|
simplbi |
|
13 |
7 12
|
syl |
|
14 |
13
|
imcld |
|
15 |
14
|
recnd |
|
16 |
15
|
abscld |
|
17 |
|
rpre |
|
18 |
17
|
ad2antrr |
|
19 |
|
pire |
|
20 |
19
|
a1i |
|
21 |
13
|
abscld |
|
22 |
|
absimle |
|
23 |
13 22
|
syl |
|
24 |
11
|
simprbi |
|
25 |
7 24
|
syl |
|
26 |
|
0re |
|
27 |
|
elico2 |
|
28 |
26 3 27
|
sylancr |
|
29 |
25 28
|
mpbid |
|
30 |
29
|
simp3d |
|
31 |
16 21 18 23 30
|
lelttrd |
|
32 |
|
simplr |
|
33 |
16 18 20 31 32
|
lttrd |
|