| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
|
rpxr |
|
| 3 |
2
|
ad2antrr |
|
| 4 |
|
eqid |
|
| 5 |
4
|
cnbl0 |
|
| 6 |
3 5
|
syl |
|
| 7 |
1 6
|
eleqtrrd |
|
| 8 |
|
absf |
|
| 9 |
|
ffn |
|
| 10 |
|
elpreima |
|
| 11 |
8 9 10
|
mp2b |
|
| 12 |
11
|
simplbi |
|
| 13 |
7 12
|
syl |
|
| 14 |
13
|
imcld |
|
| 15 |
14
|
recnd |
|
| 16 |
15
|
abscld |
|
| 17 |
|
rpre |
|
| 18 |
17
|
ad2antrr |
|
| 19 |
|
pire |
|
| 20 |
19
|
a1i |
|
| 21 |
13
|
abscld |
|
| 22 |
|
absimle |
|
| 23 |
13 22
|
syl |
|
| 24 |
11
|
simprbi |
|
| 25 |
7 24
|
syl |
|
| 26 |
|
0re |
|
| 27 |
|
elico2 |
|
| 28 |
26 3 27
|
sylancr |
|
| 29 |
25 28
|
mpbid |
|
| 30 |
29
|
simp3d |
|
| 31 |
16 21 18 23 30
|
lelttrd |
|
| 32 |
|
simplr |
|
| 33 |
16 18 20 31 32
|
lttrd |
|