Metamath Proof Explorer


Theorem efopnlem2

Description: Lemma for efopn . (Contributed by Mario Carneiro, 2-May-2015)

Ref Expression
Hypothesis efopn.j J=TopOpenfld
Assertion efopnlem2 R+R<πexp0ballabsRJ

Proof

Step Hyp Ref Expression
1 efopn.j J=TopOpenfld
2 logf1o log:01-1 ontoranlog
3 f1orn log:01-1 ontoranloglogFn0Funlog-1
4 3 simprbi log:01-1 ontoranlogFunlog-1
5 funcnvres Funlog-1log−∞0-1=log-1log−∞0
6 2 4 5 mp2b log−∞0-1=log-1log−∞0
7 df-log log=exp-1ππ-1
8 7 cnveqi log-1=exp-1ππ-1-1
9 relres Relexp-1ππ
10 dfrel2 Relexp-1ππexp-1ππ-1-1=exp-1ππ
11 9 10 mpbi exp-1ππ-1-1=exp-1ππ
12 8 11 eqtri log-1=exp-1ππ
13 12 reseq1i log-1log−∞0=exp-1ππlog−∞0
14 imassrn log−∞0ranlog
15 logrn ranlog=-1ππ
16 14 15 sseqtri log−∞0-1ππ
17 resabs1 log−∞0-1ππexp-1ππlog−∞0=explog−∞0
18 16 17 ax-mp exp-1ππlog−∞0=explog−∞0
19 6 13 18 3eqtri log−∞0-1=explog−∞0
20 19 imaeq1i log−∞0-10ballabsR=explog−∞00ballabsR
21 cnxmet abs∞Met
22 0cnd R+R<π0
23 rpxr R+R*
24 23 adantr R+R<πR*
25 blssm abs∞Met0R*0ballabsR
26 21 22 24 25 mp3an2i R+R<π0ballabsR
27 26 sselda R+R<πx0ballabsRx
28 27 imcld R+R<πx0ballabsRx
29 efopnlem1 R+R<πx0ballabsRx<π
30 pire π
31 abslt xπx<ππ<xx<π
32 28 30 31 sylancl R+R<πx0ballabsRx<ππ<xx<π
33 29 32 mpbid R+R<πx0ballabsRπ<xx<π
34 33 simpld R+R<πx0ballabsRπ<x
35 33 simprd R+R<πx0ballabsRx<π
36 30 renegcli π
37 36 rexri π*
38 30 rexri π*
39 elioo2 π*π*xππxπ<xx<π
40 37 38 39 mp2an xππxπ<xx<π
41 28 34 35 40 syl3anbrc R+R<πx0ballabsRxππ
42 imf :
43 ffn :Fn
44 elpreima Fnx-1ππxxππ
45 42 43 44 mp2b x-1ππxxππ
46 27 41 45 sylanbrc R+R<πx0ballabsRx-1ππ
47 46 ex R+R<πx0ballabsRx-1ππ
48 47 ssrdv R+R<π0ballabsR-1ππ
49 df-ima log−∞0=ranlog−∞0
50 eqid −∞0=−∞0
51 50 logf1o2 log−∞0:−∞01-1 onto-1ππ
52 f1ofo log−∞0:−∞01-1 onto-1ππlog−∞0:−∞0onto-1ππ
53 forn log−∞0:−∞0onto-1ππranlog−∞0=-1ππ
54 51 52 53 mp2b ranlog−∞0=-1ππ
55 49 54 eqtri log−∞0=-1ππ
56 48 55 sseqtrrdi R+R<π0ballabsRlog−∞0
57 resima2 0ballabsRlog−∞0explog−∞00ballabsR=exp0ballabsR
58 56 57 syl R+R<πexplog−∞00ballabsR=exp0ballabsR
59 20 58 eqtrid R+R<πlog−∞0-10ballabsR=exp0ballabsR
60 50 logcn log−∞0:−∞0cn
61 difss −∞0
62 ssid
63 eqid J𝑡−∞0=J𝑡−∞0
64 1 cnfldtopon JTopOn
65 64 toponrestid J=J𝑡
66 1 63 65 cncfcn −∞0−∞0cn=J𝑡−∞0CnJ
67 61 62 66 mp2an −∞0cn=J𝑡−∞0CnJ
68 60 67 eleqtri log−∞0J𝑡−∞0CnJ
69 1 cnfldtopn J=MetOpenabs
70 69 blopn abs∞Met0R*0ballabsRJ
71 21 22 24 70 mp3an2i R+R<π0ballabsRJ
72 cnima log−∞0J𝑡−∞0CnJ0ballabsRJlog−∞0-10ballabsRJ𝑡−∞0
73 68 71 72 sylancr R+R<πlog−∞0-10ballabsRJ𝑡−∞0
74 59 73 eqeltrrd R+R<πexp0ballabsRJ𝑡−∞0
75 1 cnfldtop JTop
76 50 logdmopn −∞0TopOpenfld
77 76 1 eleqtrri −∞0J
78 restopn2 JTop−∞0Jexp0ballabsRJ𝑡−∞0exp0ballabsRJexp0ballabsR−∞0
79 75 77 78 mp2an exp0ballabsRJ𝑡−∞0exp0ballabsRJexp0ballabsR−∞0
80 74 79 sylib R+R<πexp0ballabsRJexp0ballabsR−∞0
81 80 simpld R+R<πexp0ballabsRJ