Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
efopnlem2
Next ⟩
efopn
Metamath Proof Explorer
Ascii
Unicode
Theorem
efopnlem2
Description:
Lemma for
efopn
.
(Contributed by
Mario Carneiro
, 2-May-2015)
Ref
Expression
Hypothesis
efopn.j
⊢
J
=
TopOpen
ℂ
fld
Assertion
efopnlem2
π
⊢
R
∈
ℝ
+
∧
R
<
π
→
exp
0
ball
abs
∘
−
R
∈
J
Proof
Step
Hyp
Ref
Expression
1
efopn.j
⊢
J
=
TopOpen
ℂ
fld
2
logf1o
⊢
log
:
ℂ
∖
0
⟶
1-1 onto
ran
log
3
f1orn
⊢
log
:
ℂ
∖
0
⟶
1-1 onto
ran
log
↔
log
Fn
ℂ
∖
0
∧
Fun
log
-1
4
3
simprbi
⊢
log
:
ℂ
∖
0
⟶
1-1 onto
ran
log
→
Fun
log
-1
5
funcnvres
⊢
Fun
log
-1
→
log
↾
ℂ
∖
−∞
0
-1
=
log
-1
↾
log
ℂ
∖
−∞
0
6
2
4
5
mp2b
⊢
log
↾
ℂ
∖
−∞
0
-1
=
log
-1
↾
log
ℂ
∖
−∞
0
7
df-log
π
π
⊢
log
=
exp
↾
ℑ
-1
−
π
π
-1
8
7
cnveqi
π
π
⊢
log
-1
=
exp
↾
ℑ
-1
−
π
π
-1
-1
9
relres
π
π
⊢
Rel
exp
↾
ℑ
-1
−
π
π
10
dfrel2
π
π
π
π
π
π
⊢
Rel
exp
↾
ℑ
-1
−
π
π
↔
exp
↾
ℑ
-1
−
π
π
-1
-1
=
exp
↾
ℑ
-1
−
π
π
11
9
10
mpbi
π
π
π
π
⊢
exp
↾
ℑ
-1
−
π
π
-1
-1
=
exp
↾
ℑ
-1
−
π
π
12
8
11
eqtri
π
π
⊢
log
-1
=
exp
↾
ℑ
-1
−
π
π
13
12
reseq1i
π
π
⊢
log
-1
↾
log
ℂ
∖
−∞
0
=
exp
↾
ℑ
-1
−
π
π
↾
log
ℂ
∖
−∞
0
14
imassrn
⊢
log
ℂ
∖
−∞
0
⊆
ran
log
15
logrn
π
π
⊢
ran
log
=
ℑ
-1
−
π
π
16
14
15
sseqtri
π
π
⊢
log
ℂ
∖
−∞
0
⊆
ℑ
-1
−
π
π
17
resabs1
π
π
π
π
⊢
log
ℂ
∖
−∞
0
⊆
ℑ
-1
−
π
π
→
exp
↾
ℑ
-1
−
π
π
↾
log
ℂ
∖
−∞
0
=
exp
↾
log
ℂ
∖
−∞
0
18
16
17
ax-mp
π
π
⊢
exp
↾
ℑ
-1
−
π
π
↾
log
ℂ
∖
−∞
0
=
exp
↾
log
ℂ
∖
−∞
0
19
6
13
18
3eqtri
⊢
log
↾
ℂ
∖
−∞
0
-1
=
exp
↾
log
ℂ
∖
−∞
0
20
19
imaeq1i
⊢
log
↾
ℂ
∖
−∞
0
-1
0
ball
abs
∘
−
R
=
exp
↾
log
ℂ
∖
−∞
0
0
ball
abs
∘
−
R
21
cnxmet
⊢
abs
∘
−
∈
∞Met
ℂ
22
0cnd
π
⊢
R
∈
ℝ
+
∧
R
<
π
→
0
∈
ℂ
23
rpxr
⊢
R
∈
ℝ
+
→
R
∈
ℝ
*
24
23
adantr
π
⊢
R
∈
ℝ
+
∧
R
<
π
→
R
∈
ℝ
*
25
blssm
⊢
abs
∘
−
∈
∞Met
ℂ
∧
0
∈
ℂ
∧
R
∈
ℝ
*
→
0
ball
abs
∘
−
R
⊆
ℂ
26
21
22
24
25
mp3an2i
π
⊢
R
∈
ℝ
+
∧
R
<
π
→
0
ball
abs
∘
−
R
⊆
ℂ
27
26
sselda
π
⊢
R
∈
ℝ
+
∧
R
<
π
∧
x
∈
0
ball
abs
∘
−
R
→
x
∈
ℂ
28
27
imcld
π
⊢
R
∈
ℝ
+
∧
R
<
π
∧
x
∈
0
ball
abs
∘
−
R
→
ℑ
x
∈
ℝ
29
efopnlem1
π
π
⊢
R
∈
ℝ
+
∧
R
<
π
∧
x
∈
0
ball
abs
∘
−
R
→
ℑ
x
<
π
30
pire
π
⊢
π
∈
ℝ
31
abslt
π
π
π
π
⊢
ℑ
x
∈
ℝ
∧
π
∈
ℝ
→
ℑ
x
<
π
↔
−
π
<
ℑ
x
∧
ℑ
x
<
π
32
28
30
31
sylancl
π
π
π
π
⊢
R
∈
ℝ
+
∧
R
<
π
∧
x
∈
0
ball
abs
∘
−
R
→
ℑ
x
<
π
↔
−
π
<
ℑ
x
∧
ℑ
x
<
π
33
29
32
mpbid
π
π
π
⊢
R
∈
ℝ
+
∧
R
<
π
∧
x
∈
0
ball
abs
∘
−
R
→
−
π
<
ℑ
x
∧
ℑ
x
<
π
34
33
simpld
π
π
⊢
R
∈
ℝ
+
∧
R
<
π
∧
x
∈
0
ball
abs
∘
−
R
→
−
π
<
ℑ
x
35
33
simprd
π
π
⊢
R
∈
ℝ
+
∧
R
<
π
∧
x
∈
0
ball
abs
∘
−
R
→
ℑ
x
<
π
36
30
renegcli
π
⊢
−
π
∈
ℝ
37
36
rexri
π
⊢
−
π
∈
ℝ
*
38
30
rexri
π
⊢
π
∈
ℝ
*
39
elioo2
π
π
π
π
π
π
⊢
−
π
∈
ℝ
*
∧
π
∈
ℝ
*
→
ℑ
x
∈
−
π
π
↔
ℑ
x
∈
ℝ
∧
−
π
<
ℑ
x
∧
ℑ
x
<
π
40
37
38
39
mp2an
π
π
π
π
⊢
ℑ
x
∈
−
π
π
↔
ℑ
x
∈
ℝ
∧
−
π
<
ℑ
x
∧
ℑ
x
<
π
41
28
34
35
40
syl3anbrc
π
π
π
⊢
R
∈
ℝ
+
∧
R
<
π
∧
x
∈
0
ball
abs
∘
−
R
→
ℑ
x
∈
−
π
π
42
imf
⊢
ℑ
:
ℂ
⟶
ℝ
43
ffn
⊢
ℑ
:
ℂ
⟶
ℝ
→
ℑ
Fn
ℂ
44
elpreima
π
π
π
π
⊢
ℑ
Fn
ℂ
→
x
∈
ℑ
-1
−
π
π
↔
x
∈
ℂ
∧
ℑ
x
∈
−
π
π
45
42
43
44
mp2b
π
π
π
π
⊢
x
∈
ℑ
-1
−
π
π
↔
x
∈
ℂ
∧
ℑ
x
∈
−
π
π
46
27
41
45
sylanbrc
π
π
π
⊢
R
∈
ℝ
+
∧
R
<
π
∧
x
∈
0
ball
abs
∘
−
R
→
x
∈
ℑ
-1
−
π
π
47
46
ex
π
π
π
⊢
R
∈
ℝ
+
∧
R
<
π
→
x
∈
0
ball
abs
∘
−
R
→
x
∈
ℑ
-1
−
π
π
48
47
ssrdv
π
π
π
⊢
R
∈
ℝ
+
∧
R
<
π
→
0
ball
abs
∘
−
R
⊆
ℑ
-1
−
π
π
49
df-ima
⊢
log
ℂ
∖
−∞
0
=
ran
log
↾
ℂ
∖
−∞
0
50
eqid
⊢
ℂ
∖
−∞
0
=
ℂ
∖
−∞
0
51
50
logf1o2
π
π
⊢
log
↾
ℂ
∖
−∞
0
:
ℂ
∖
−∞
0
⟶
1-1 onto
ℑ
-1
−
π
π
52
f1ofo
π
π
π
π
⊢
log
↾
ℂ
∖
−∞
0
:
ℂ
∖
−∞
0
⟶
1-1 onto
ℑ
-1
−
π
π
→
log
↾
ℂ
∖
−∞
0
:
ℂ
∖
−∞
0
⟶
onto
ℑ
-1
−
π
π
53
forn
π
π
π
π
⊢
log
↾
ℂ
∖
−∞
0
:
ℂ
∖
−∞
0
⟶
onto
ℑ
-1
−
π
π
→
ran
log
↾
ℂ
∖
−∞
0
=
ℑ
-1
−
π
π
54
51
52
53
mp2b
π
π
⊢
ran
log
↾
ℂ
∖
−∞
0
=
ℑ
-1
−
π
π
55
49
54
eqtri
π
π
⊢
log
ℂ
∖
−∞
0
=
ℑ
-1
−
π
π
56
48
55
sseqtrrdi
π
⊢
R
∈
ℝ
+
∧
R
<
π
→
0
ball
abs
∘
−
R
⊆
log
ℂ
∖
−∞
0
57
resima2
⊢
0
ball
abs
∘
−
R
⊆
log
ℂ
∖
−∞
0
→
exp
↾
log
ℂ
∖
−∞
0
0
ball
abs
∘
−
R
=
exp
0
ball
abs
∘
−
R
58
56
57
syl
π
⊢
R
∈
ℝ
+
∧
R
<
π
→
exp
↾
log
ℂ
∖
−∞
0
0
ball
abs
∘
−
R
=
exp
0
ball
abs
∘
−
R
59
20
58
eqtrid
π
⊢
R
∈
ℝ
+
∧
R
<
π
→
log
↾
ℂ
∖
−∞
0
-1
0
ball
abs
∘
−
R
=
exp
0
ball
abs
∘
−
R
60
50
logcn
⊢
log
↾
ℂ
∖
−∞
0
:
ℂ
∖
−∞
0
⟶
cn
ℂ
61
difss
⊢
ℂ
∖
−∞
0
⊆
ℂ
62
ssid
⊢
ℂ
⊆
ℂ
63
eqid
⊢
J
↾
𝑡
ℂ
∖
−∞
0
=
J
↾
𝑡
ℂ
∖
−∞
0
64
1
cnfldtopon
⊢
J
∈
TopOn
ℂ
65
64
toponrestid
⊢
J
=
J
↾
𝑡
ℂ
66
1
63
65
cncfcn
⊢
ℂ
∖
−∞
0
⊆
ℂ
∧
ℂ
⊆
ℂ
→
ℂ
∖
−∞
0
⟶
cn
ℂ
=
J
↾
𝑡
ℂ
∖
−∞
0
Cn
J
67
61
62
66
mp2an
⊢
ℂ
∖
−∞
0
⟶
cn
ℂ
=
J
↾
𝑡
ℂ
∖
−∞
0
Cn
J
68
60
67
eleqtri
⊢
log
↾
ℂ
∖
−∞
0
∈
J
↾
𝑡
ℂ
∖
−∞
0
Cn
J
69
1
cnfldtopn
⊢
J
=
MetOpen
abs
∘
−
70
69
blopn
⊢
abs
∘
−
∈
∞Met
ℂ
∧
0
∈
ℂ
∧
R
∈
ℝ
*
→
0
ball
abs
∘
−
R
∈
J
71
21
22
24
70
mp3an2i
π
⊢
R
∈
ℝ
+
∧
R
<
π
→
0
ball
abs
∘
−
R
∈
J
72
cnima
⊢
log
↾
ℂ
∖
−∞
0
∈
J
↾
𝑡
ℂ
∖
−∞
0
Cn
J
∧
0
ball
abs
∘
−
R
∈
J
→
log
↾
ℂ
∖
−∞
0
-1
0
ball
abs
∘
−
R
∈
J
↾
𝑡
ℂ
∖
−∞
0
73
68
71
72
sylancr
π
⊢
R
∈
ℝ
+
∧
R
<
π
→
log
↾
ℂ
∖
−∞
0
-1
0
ball
abs
∘
−
R
∈
J
↾
𝑡
ℂ
∖
−∞
0
74
59
73
eqeltrrd
π
⊢
R
∈
ℝ
+
∧
R
<
π
→
exp
0
ball
abs
∘
−
R
∈
J
↾
𝑡
ℂ
∖
−∞
0
75
1
cnfldtop
⊢
J
∈
Top
76
50
logdmopn
⊢
ℂ
∖
−∞
0
∈
TopOpen
ℂ
fld
77
76
1
eleqtrri
⊢
ℂ
∖
−∞
0
∈
J
78
restopn2
⊢
J
∈
Top
∧
ℂ
∖
−∞
0
∈
J
→
exp
0
ball
abs
∘
−
R
∈
J
↾
𝑡
ℂ
∖
−∞
0
↔
exp
0
ball
abs
∘
−
R
∈
J
∧
exp
0
ball
abs
∘
−
R
⊆
ℂ
∖
−∞
0
79
75
77
78
mp2an
⊢
exp
0
ball
abs
∘
−
R
∈
J
↾
𝑡
ℂ
∖
−∞
0
↔
exp
0
ball
abs
∘
−
R
∈
J
∧
exp
0
ball
abs
∘
−
R
⊆
ℂ
∖
−∞
0
80
74
79
sylib
π
⊢
R
∈
ℝ
+
∧
R
<
π
→
exp
0
ball
abs
∘
−
R
∈
J
∧
exp
0
ball
abs
∘
−
R
⊆
ℂ
∖
−∞
0
81
80
simpld
π
⊢
R
∈
ℝ
+
∧
R
<
π
→
exp
0
ball
abs
∘
−
R
∈
J