Metamath Proof Explorer


Theorem efopnlem2

Description: Lemma for efopn . (Contributed by Mario Carneiro, 2-May-2015)

Ref Expression
Hypothesis efopn.j J = TopOpen fld
Assertion efopnlem2 R + R < π exp 0 ball abs R J

Proof

Step Hyp Ref Expression
1 efopn.j J = TopOpen fld
2 logf1o log : 0 1-1 onto ran log
3 f1orn log : 0 1-1 onto ran log log Fn 0 Fun log -1
4 3 simprbi log : 0 1-1 onto ran log Fun log -1
5 funcnvres Fun log -1 log −∞ 0 -1 = log -1 log −∞ 0
6 2 4 5 mp2b log −∞ 0 -1 = log -1 log −∞ 0
7 df-log log = exp -1 π π -1
8 7 cnveqi log -1 = exp -1 π π -1 -1
9 relres Rel exp -1 π π
10 dfrel2 Rel exp -1 π π exp -1 π π -1 -1 = exp -1 π π
11 9 10 mpbi exp -1 π π -1 -1 = exp -1 π π
12 8 11 eqtri log -1 = exp -1 π π
13 12 reseq1i log -1 log −∞ 0 = exp -1 π π log −∞ 0
14 imassrn log −∞ 0 ran log
15 logrn ran log = -1 π π
16 14 15 sseqtri log −∞ 0 -1 π π
17 resabs1 log −∞ 0 -1 π π exp -1 π π log −∞ 0 = exp log −∞ 0
18 16 17 ax-mp exp -1 π π log −∞ 0 = exp log −∞ 0
19 6 13 18 3eqtri log −∞ 0 -1 = exp log −∞ 0
20 19 imaeq1i log −∞ 0 -1 0 ball abs R = exp log −∞ 0 0 ball abs R
21 cnxmet abs ∞Met
22 0cnd R + R < π 0
23 rpxr R + R *
24 23 adantr R + R < π R *
25 blssm abs ∞Met 0 R * 0 ball abs R
26 21 22 24 25 mp3an2i R + R < π 0 ball abs R
27 26 sselda R + R < π x 0 ball abs R x
28 27 imcld R + R < π x 0 ball abs R x
29 efopnlem1 R + R < π x 0 ball abs R x < π
30 pire π
31 abslt x π x < π π < x x < π
32 28 30 31 sylancl R + R < π x 0 ball abs R x < π π < x x < π
33 29 32 mpbid R + R < π x 0 ball abs R π < x x < π
34 33 simpld R + R < π x 0 ball abs R π < x
35 33 simprd R + R < π x 0 ball abs R x < π
36 30 renegcli π
37 36 rexri π *
38 30 rexri π *
39 elioo2 π * π * x π π x π < x x < π
40 37 38 39 mp2an x π π x π < x x < π
41 28 34 35 40 syl3anbrc R + R < π x 0 ball abs R x π π
42 imf :
43 ffn : Fn
44 elpreima Fn x -1 π π x x π π
45 42 43 44 mp2b x -1 π π x x π π
46 27 41 45 sylanbrc R + R < π x 0 ball abs R x -1 π π
47 46 ex R + R < π x 0 ball abs R x -1 π π
48 47 ssrdv R + R < π 0 ball abs R -1 π π
49 df-ima log −∞ 0 = ran log −∞ 0
50 eqid −∞ 0 = −∞ 0
51 50 logf1o2 log −∞ 0 : −∞ 0 1-1 onto -1 π π
52 f1ofo log −∞ 0 : −∞ 0 1-1 onto -1 π π log −∞ 0 : −∞ 0 onto -1 π π
53 forn log −∞ 0 : −∞ 0 onto -1 π π ran log −∞ 0 = -1 π π
54 51 52 53 mp2b ran log −∞ 0 = -1 π π
55 49 54 eqtri log −∞ 0 = -1 π π
56 48 55 sseqtrrdi R + R < π 0 ball abs R log −∞ 0
57 resima2 0 ball abs R log −∞ 0 exp log −∞ 0 0 ball abs R = exp 0 ball abs R
58 56 57 syl R + R < π exp log −∞ 0 0 ball abs R = exp 0 ball abs R
59 20 58 eqtrid R + R < π log −∞ 0 -1 0 ball abs R = exp 0 ball abs R
60 50 logcn log −∞ 0 : −∞ 0 cn
61 difss −∞ 0
62 ssid
63 eqid J 𝑡 −∞ 0 = J 𝑡 −∞ 0
64 1 cnfldtopon J TopOn
65 64 toponrestid J = J 𝑡
66 1 63 65 cncfcn −∞ 0 −∞ 0 cn = J 𝑡 −∞ 0 Cn J
67 61 62 66 mp2an −∞ 0 cn = J 𝑡 −∞ 0 Cn J
68 60 67 eleqtri log −∞ 0 J 𝑡 −∞ 0 Cn J
69 1 cnfldtopn J = MetOpen abs
70 69 blopn abs ∞Met 0 R * 0 ball abs R J
71 21 22 24 70 mp3an2i R + R < π 0 ball abs R J
72 cnima log −∞ 0 J 𝑡 −∞ 0 Cn J 0 ball abs R J log −∞ 0 -1 0 ball abs R J 𝑡 −∞ 0
73 68 71 72 sylancr R + R < π log −∞ 0 -1 0 ball abs R J 𝑡 −∞ 0
74 59 73 eqeltrrd R + R < π exp 0 ball abs R J 𝑡 −∞ 0
75 1 cnfldtop J Top
76 50 logdmopn −∞ 0 TopOpen fld
77 76 1 eleqtrri −∞ 0 J
78 restopn2 J Top −∞ 0 J exp 0 ball abs R J 𝑡 −∞ 0 exp 0 ball abs R J exp 0 ball abs R −∞ 0
79 75 77 78 mp2an exp 0 ball abs R J 𝑡 −∞ 0 exp 0 ball abs R J exp 0 ball abs R −∞ 0
80 74 79 sylib R + R < π exp 0 ball abs R J exp 0 ball abs R −∞ 0
81 80 simpld R + R < π exp 0 ball abs R J