Step |
Hyp |
Ref |
Expression |
1 |
|
efopn.j |
β’ π½ = ( TopOpen β βfld ) |
2 |
|
logf1o |
β’ log : ( β β { 0 } ) β1-1-ontoβ ran log |
3 |
|
f1orn |
β’ ( log : ( β β { 0 } ) β1-1-ontoβ ran log β ( log Fn ( β β { 0 } ) β§ Fun β‘ log ) ) |
4 |
3
|
simprbi |
β’ ( log : ( β β { 0 } ) β1-1-ontoβ ran log β Fun β‘ log ) |
5 |
|
funcnvres |
β’ ( Fun β‘ log β β‘ ( log βΎ ( β β ( -β (,] 0 ) ) ) = ( β‘ log βΎ ( log β ( β β ( -β (,] 0 ) ) ) ) ) |
6 |
2 4 5
|
mp2b |
β’ β‘ ( log βΎ ( β β ( -β (,] 0 ) ) ) = ( β‘ log βΎ ( log β ( β β ( -β (,] 0 ) ) ) ) |
7 |
|
df-log |
β’ log = β‘ ( exp βΎ ( β‘ β β ( - Ο (,] Ο ) ) ) |
8 |
7
|
cnveqi |
β’ β‘ log = β‘ β‘ ( exp βΎ ( β‘ β β ( - Ο (,] Ο ) ) ) |
9 |
|
relres |
β’ Rel ( exp βΎ ( β‘ β β ( - Ο (,] Ο ) ) ) |
10 |
|
dfrel2 |
β’ ( Rel ( exp βΎ ( β‘ β β ( - Ο (,] Ο ) ) ) β β‘ β‘ ( exp βΎ ( β‘ β β ( - Ο (,] Ο ) ) ) = ( exp βΎ ( β‘ β β ( - Ο (,] Ο ) ) ) ) |
11 |
9 10
|
mpbi |
β’ β‘ β‘ ( exp βΎ ( β‘ β β ( - Ο (,] Ο ) ) ) = ( exp βΎ ( β‘ β β ( - Ο (,] Ο ) ) ) |
12 |
8 11
|
eqtri |
β’ β‘ log = ( exp βΎ ( β‘ β β ( - Ο (,] Ο ) ) ) |
13 |
12
|
reseq1i |
β’ ( β‘ log βΎ ( log β ( β β ( -β (,] 0 ) ) ) ) = ( ( exp βΎ ( β‘ β β ( - Ο (,] Ο ) ) ) βΎ ( log β ( β β ( -β (,] 0 ) ) ) ) |
14 |
|
imassrn |
β’ ( log β ( β β ( -β (,] 0 ) ) ) β ran log |
15 |
|
logrn |
β’ ran log = ( β‘ β β ( - Ο (,] Ο ) ) |
16 |
14 15
|
sseqtri |
β’ ( log β ( β β ( -β (,] 0 ) ) ) β ( β‘ β β ( - Ο (,] Ο ) ) |
17 |
|
resabs1 |
β’ ( ( log β ( β β ( -β (,] 0 ) ) ) β ( β‘ β β ( - Ο (,] Ο ) ) β ( ( exp βΎ ( β‘ β β ( - Ο (,] Ο ) ) ) βΎ ( log β ( β β ( -β (,] 0 ) ) ) ) = ( exp βΎ ( log β ( β β ( -β (,] 0 ) ) ) ) ) |
18 |
16 17
|
ax-mp |
β’ ( ( exp βΎ ( β‘ β β ( - Ο (,] Ο ) ) ) βΎ ( log β ( β β ( -β (,] 0 ) ) ) ) = ( exp βΎ ( log β ( β β ( -β (,] 0 ) ) ) ) |
19 |
6 13 18
|
3eqtri |
β’ β‘ ( log βΎ ( β β ( -β (,] 0 ) ) ) = ( exp βΎ ( log β ( β β ( -β (,] 0 ) ) ) ) |
20 |
19
|
imaeq1i |
β’ ( β‘ ( log βΎ ( β β ( -β (,] 0 ) ) ) β ( 0 ( ball β ( abs β β ) ) π
) ) = ( ( exp βΎ ( log β ( β β ( -β (,] 0 ) ) ) ) β ( 0 ( ball β ( abs β β ) ) π
) ) |
21 |
|
cnxmet |
β’ ( abs β β ) β ( βMet β β ) |
22 |
|
0cnd |
β’ ( ( π
β β+ β§ π
< Ο ) β 0 β β ) |
23 |
|
rpxr |
β’ ( π
β β+ β π
β β* ) |
24 |
23
|
adantr |
β’ ( ( π
β β+ β§ π
< Ο ) β π
β β* ) |
25 |
|
blssm |
β’ ( ( ( abs β β ) β ( βMet β β ) β§ 0 β β β§ π
β β* ) β ( 0 ( ball β ( abs β β ) ) π
) β β ) |
26 |
21 22 24 25
|
mp3an2i |
β’ ( ( π
β β+ β§ π
< Ο ) β ( 0 ( ball β ( abs β β ) ) π
) β β ) |
27 |
26
|
sselda |
β’ ( ( ( π
β β+ β§ π
< Ο ) β§ π₯ β ( 0 ( ball β ( abs β β ) ) π
) ) β π₯ β β ) |
28 |
27
|
imcld |
β’ ( ( ( π
β β+ β§ π
< Ο ) β§ π₯ β ( 0 ( ball β ( abs β β ) ) π
) ) β ( β β π₯ ) β β ) |
29 |
|
efopnlem1 |
β’ ( ( ( π
β β+ β§ π
< Ο ) β§ π₯ β ( 0 ( ball β ( abs β β ) ) π
) ) β ( abs β ( β β π₯ ) ) < Ο ) |
30 |
|
pire |
β’ Ο β β |
31 |
|
abslt |
β’ ( ( ( β β π₯ ) β β β§ Ο β β ) β ( ( abs β ( β β π₯ ) ) < Ο β ( - Ο < ( β β π₯ ) β§ ( β β π₯ ) < Ο ) ) ) |
32 |
28 30 31
|
sylancl |
β’ ( ( ( π
β β+ β§ π
< Ο ) β§ π₯ β ( 0 ( ball β ( abs β β ) ) π
) ) β ( ( abs β ( β β π₯ ) ) < Ο β ( - Ο < ( β β π₯ ) β§ ( β β π₯ ) < Ο ) ) ) |
33 |
29 32
|
mpbid |
β’ ( ( ( π
β β+ β§ π
< Ο ) β§ π₯ β ( 0 ( ball β ( abs β β ) ) π
) ) β ( - Ο < ( β β π₯ ) β§ ( β β π₯ ) < Ο ) ) |
34 |
33
|
simpld |
β’ ( ( ( π
β β+ β§ π
< Ο ) β§ π₯ β ( 0 ( ball β ( abs β β ) ) π
) ) β - Ο < ( β β π₯ ) ) |
35 |
33
|
simprd |
β’ ( ( ( π
β β+ β§ π
< Ο ) β§ π₯ β ( 0 ( ball β ( abs β β ) ) π
) ) β ( β β π₯ ) < Ο ) |
36 |
30
|
renegcli |
β’ - Ο β β |
37 |
36
|
rexri |
β’ - Ο β β* |
38 |
30
|
rexri |
β’ Ο β β* |
39 |
|
elioo2 |
β’ ( ( - Ο β β* β§ Ο β β* ) β ( ( β β π₯ ) β ( - Ο (,) Ο ) β ( ( β β π₯ ) β β β§ - Ο < ( β β π₯ ) β§ ( β β π₯ ) < Ο ) ) ) |
40 |
37 38 39
|
mp2an |
β’ ( ( β β π₯ ) β ( - Ο (,) Ο ) β ( ( β β π₯ ) β β β§ - Ο < ( β β π₯ ) β§ ( β β π₯ ) < Ο ) ) |
41 |
28 34 35 40
|
syl3anbrc |
β’ ( ( ( π
β β+ β§ π
< Ο ) β§ π₯ β ( 0 ( ball β ( abs β β ) ) π
) ) β ( β β π₯ ) β ( - Ο (,) Ο ) ) |
42 |
|
imf |
β’ β : β βΆ β |
43 |
|
ffn |
β’ ( β : β βΆ β β β Fn β ) |
44 |
|
elpreima |
β’ ( β Fn β β ( π₯ β ( β‘ β β ( - Ο (,) Ο ) ) β ( π₯ β β β§ ( β β π₯ ) β ( - Ο (,) Ο ) ) ) ) |
45 |
42 43 44
|
mp2b |
β’ ( π₯ β ( β‘ β β ( - Ο (,) Ο ) ) β ( π₯ β β β§ ( β β π₯ ) β ( - Ο (,) Ο ) ) ) |
46 |
27 41 45
|
sylanbrc |
β’ ( ( ( π
β β+ β§ π
< Ο ) β§ π₯ β ( 0 ( ball β ( abs β β ) ) π
) ) β π₯ β ( β‘ β β ( - Ο (,) Ο ) ) ) |
47 |
46
|
ex |
β’ ( ( π
β β+ β§ π
< Ο ) β ( π₯ β ( 0 ( ball β ( abs β β ) ) π
) β π₯ β ( β‘ β β ( - Ο (,) Ο ) ) ) ) |
48 |
47
|
ssrdv |
β’ ( ( π
β β+ β§ π
< Ο ) β ( 0 ( ball β ( abs β β ) ) π
) β ( β‘ β β ( - Ο (,) Ο ) ) ) |
49 |
|
df-ima |
β’ ( log β ( β β ( -β (,] 0 ) ) ) = ran ( log βΎ ( β β ( -β (,] 0 ) ) ) |
50 |
|
eqid |
β’ ( β β ( -β (,] 0 ) ) = ( β β ( -β (,] 0 ) ) |
51 |
50
|
logf1o2 |
β’ ( log βΎ ( β β ( -β (,] 0 ) ) ) : ( β β ( -β (,] 0 ) ) β1-1-ontoβ ( β‘ β β ( - Ο (,) Ο ) ) |
52 |
|
f1ofo |
β’ ( ( log βΎ ( β β ( -β (,] 0 ) ) ) : ( β β ( -β (,] 0 ) ) β1-1-ontoβ ( β‘ β β ( - Ο (,) Ο ) ) β ( log βΎ ( β β ( -β (,] 0 ) ) ) : ( β β ( -β (,] 0 ) ) βontoβ ( β‘ β β ( - Ο (,) Ο ) ) ) |
53 |
|
forn |
β’ ( ( log βΎ ( β β ( -β (,] 0 ) ) ) : ( β β ( -β (,] 0 ) ) βontoβ ( β‘ β β ( - Ο (,) Ο ) ) β ran ( log βΎ ( β β ( -β (,] 0 ) ) ) = ( β‘ β β ( - Ο (,) Ο ) ) ) |
54 |
51 52 53
|
mp2b |
β’ ran ( log βΎ ( β β ( -β (,] 0 ) ) ) = ( β‘ β β ( - Ο (,) Ο ) ) |
55 |
49 54
|
eqtri |
β’ ( log β ( β β ( -β (,] 0 ) ) ) = ( β‘ β β ( - Ο (,) Ο ) ) |
56 |
48 55
|
sseqtrrdi |
β’ ( ( π
β β+ β§ π
< Ο ) β ( 0 ( ball β ( abs β β ) ) π
) β ( log β ( β β ( -β (,] 0 ) ) ) ) |
57 |
|
resima2 |
β’ ( ( 0 ( ball β ( abs β β ) ) π
) β ( log β ( β β ( -β (,] 0 ) ) ) β ( ( exp βΎ ( log β ( β β ( -β (,] 0 ) ) ) ) β ( 0 ( ball β ( abs β β ) ) π
) ) = ( exp β ( 0 ( ball β ( abs β β ) ) π
) ) ) |
58 |
56 57
|
syl |
β’ ( ( π
β β+ β§ π
< Ο ) β ( ( exp βΎ ( log β ( β β ( -β (,] 0 ) ) ) ) β ( 0 ( ball β ( abs β β ) ) π
) ) = ( exp β ( 0 ( ball β ( abs β β ) ) π
) ) ) |
59 |
20 58
|
eqtrid |
β’ ( ( π
β β+ β§ π
< Ο ) β ( β‘ ( log βΎ ( β β ( -β (,] 0 ) ) ) β ( 0 ( ball β ( abs β β ) ) π
) ) = ( exp β ( 0 ( ball β ( abs β β ) ) π
) ) ) |
60 |
50
|
logcn |
β’ ( log βΎ ( β β ( -β (,] 0 ) ) ) β ( ( β β ( -β (,] 0 ) ) βcnβ β ) |
61 |
|
difss |
β’ ( β β ( -β (,] 0 ) ) β β |
62 |
|
ssid |
β’ β β β |
63 |
|
eqid |
β’ ( π½ βΎt ( β β ( -β (,] 0 ) ) ) = ( π½ βΎt ( β β ( -β (,] 0 ) ) ) |
64 |
1
|
cnfldtopon |
β’ π½ β ( TopOn β β ) |
65 |
64
|
toponrestid |
β’ π½ = ( π½ βΎt β ) |
66 |
1 63 65
|
cncfcn |
β’ ( ( ( β β ( -β (,] 0 ) ) β β β§ β β β ) β ( ( β β ( -β (,] 0 ) ) βcnβ β ) = ( ( π½ βΎt ( β β ( -β (,] 0 ) ) ) Cn π½ ) ) |
67 |
61 62 66
|
mp2an |
β’ ( ( β β ( -β (,] 0 ) ) βcnβ β ) = ( ( π½ βΎt ( β β ( -β (,] 0 ) ) ) Cn π½ ) |
68 |
60 67
|
eleqtri |
β’ ( log βΎ ( β β ( -β (,] 0 ) ) ) β ( ( π½ βΎt ( β β ( -β (,] 0 ) ) ) Cn π½ ) |
69 |
1
|
cnfldtopn |
β’ π½ = ( MetOpen β ( abs β β ) ) |
70 |
69
|
blopn |
β’ ( ( ( abs β β ) β ( βMet β β ) β§ 0 β β β§ π
β β* ) β ( 0 ( ball β ( abs β β ) ) π
) β π½ ) |
71 |
21 22 24 70
|
mp3an2i |
β’ ( ( π
β β+ β§ π
< Ο ) β ( 0 ( ball β ( abs β β ) ) π
) β π½ ) |
72 |
|
cnima |
β’ ( ( ( log βΎ ( β β ( -β (,] 0 ) ) ) β ( ( π½ βΎt ( β β ( -β (,] 0 ) ) ) Cn π½ ) β§ ( 0 ( ball β ( abs β β ) ) π
) β π½ ) β ( β‘ ( log βΎ ( β β ( -β (,] 0 ) ) ) β ( 0 ( ball β ( abs β β ) ) π
) ) β ( π½ βΎt ( β β ( -β (,] 0 ) ) ) ) |
73 |
68 71 72
|
sylancr |
β’ ( ( π
β β+ β§ π
< Ο ) β ( β‘ ( log βΎ ( β β ( -β (,] 0 ) ) ) β ( 0 ( ball β ( abs β β ) ) π
) ) β ( π½ βΎt ( β β ( -β (,] 0 ) ) ) ) |
74 |
59 73
|
eqeltrrd |
β’ ( ( π
β β+ β§ π
< Ο ) β ( exp β ( 0 ( ball β ( abs β β ) ) π
) ) β ( π½ βΎt ( β β ( -β (,] 0 ) ) ) ) |
75 |
1
|
cnfldtop |
β’ π½ β Top |
76 |
50
|
logdmopn |
β’ ( β β ( -β (,] 0 ) ) β ( TopOpen β βfld ) |
77 |
76 1
|
eleqtrri |
β’ ( β β ( -β (,] 0 ) ) β π½ |
78 |
|
restopn2 |
β’ ( ( π½ β Top β§ ( β β ( -β (,] 0 ) ) β π½ ) β ( ( exp β ( 0 ( ball β ( abs β β ) ) π
) ) β ( π½ βΎt ( β β ( -β (,] 0 ) ) ) β ( ( exp β ( 0 ( ball β ( abs β β ) ) π
) ) β π½ β§ ( exp β ( 0 ( ball β ( abs β β ) ) π
) ) β ( β β ( -β (,] 0 ) ) ) ) ) |
79 |
75 77 78
|
mp2an |
β’ ( ( exp β ( 0 ( ball β ( abs β β ) ) π
) ) β ( π½ βΎt ( β β ( -β (,] 0 ) ) ) β ( ( exp β ( 0 ( ball β ( abs β β ) ) π
) ) β π½ β§ ( exp β ( 0 ( ball β ( abs β β ) ) π
) ) β ( β β ( -β (,] 0 ) ) ) ) |
80 |
74 79
|
sylib |
β’ ( ( π
β β+ β§ π
< Ο ) β ( ( exp β ( 0 ( ball β ( abs β β ) ) π
) ) β π½ β§ ( exp β ( 0 ( ball β ( abs β β ) ) π
) ) β ( β β ( -β (,] 0 ) ) ) ) |
81 |
80
|
simpld |
β’ ( ( π
β β+ β§ π
< Ο ) β ( exp β ( 0 ( ball β ( abs β β ) ) π
) ) β π½ ) |