| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logcn.d |
⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 2 |
|
logf1o |
⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log |
| 3 |
|
f1of1 |
⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → log : ( ℂ ∖ { 0 } ) –1-1→ ran log ) |
| 4 |
2 3
|
ax-mp |
⊢ log : ( ℂ ∖ { 0 } ) –1-1→ ran log |
| 5 |
1
|
logdmss |
⊢ 𝐷 ⊆ ( ℂ ∖ { 0 } ) |
| 6 |
|
f1ores |
⊢ ( ( log : ( ℂ ∖ { 0 } ) –1-1→ ran log ∧ 𝐷 ⊆ ( ℂ ∖ { 0 } ) ) → ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( log “ 𝐷 ) ) |
| 7 |
4 5 6
|
mp2an |
⊢ ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( log “ 𝐷 ) |
| 8 |
|
f1ofun |
⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → Fun log ) |
| 9 |
2 8
|
ax-mp |
⊢ Fun log |
| 10 |
|
f1of |
⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → log : ( ℂ ∖ { 0 } ) ⟶ ran log ) |
| 11 |
2 10
|
ax-mp |
⊢ log : ( ℂ ∖ { 0 } ) ⟶ ran log |
| 12 |
11
|
fdmi |
⊢ dom log = ( ℂ ∖ { 0 } ) |
| 13 |
5 12
|
sseqtrri |
⊢ 𝐷 ⊆ dom log |
| 14 |
|
funimass4 |
⊢ ( ( Fun log ∧ 𝐷 ⊆ dom log ) → ( ( log “ 𝐷 ) ⊆ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ∀ 𝑥 ∈ 𝐷 ( log ‘ 𝑥 ) ∈ ( ◡ ℑ “ ( - π (,) π ) ) ) ) |
| 15 |
9 13 14
|
mp2an |
⊢ ( ( log “ 𝐷 ) ⊆ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ∀ 𝑥 ∈ 𝐷 ( log ‘ 𝑥 ) ∈ ( ◡ ℑ “ ( - π (,) π ) ) ) |
| 16 |
1
|
ellogdm |
⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ+ ) ) ) |
| 17 |
16
|
simplbi |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ ) |
| 18 |
1
|
logdmn0 |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ≠ 0 ) |
| 19 |
17 18
|
logcld |
⊢ ( 𝑥 ∈ 𝐷 → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 20 |
19
|
imcld |
⊢ ( 𝑥 ∈ 𝐷 → ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 21 |
17 18
|
logimcld |
⊢ ( 𝑥 ∈ 𝐷 → ( - π < ( ℑ ‘ ( log ‘ 𝑥 ) ) ∧ ( ℑ ‘ ( log ‘ 𝑥 ) ) ≤ π ) ) |
| 22 |
21
|
simpld |
⊢ ( 𝑥 ∈ 𝐷 → - π < ( ℑ ‘ ( log ‘ 𝑥 ) ) ) |
| 23 |
|
pire |
⊢ π ∈ ℝ |
| 24 |
23
|
a1i |
⊢ ( 𝑥 ∈ 𝐷 → π ∈ ℝ ) |
| 25 |
21
|
simprd |
⊢ ( 𝑥 ∈ 𝐷 → ( ℑ ‘ ( log ‘ 𝑥 ) ) ≤ π ) |
| 26 |
1
|
logdmnrp |
⊢ ( 𝑥 ∈ 𝐷 → ¬ - 𝑥 ∈ ℝ+ ) |
| 27 |
|
lognegb |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( - 𝑥 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝑥 ) ) = π ) ) |
| 28 |
17 18 27
|
syl2anc |
⊢ ( 𝑥 ∈ 𝐷 → ( - 𝑥 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝑥 ) ) = π ) ) |
| 29 |
28
|
necon3bbid |
⊢ ( 𝑥 ∈ 𝐷 → ( ¬ - 𝑥 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝑥 ) ) ≠ π ) ) |
| 30 |
26 29
|
mpbid |
⊢ ( 𝑥 ∈ 𝐷 → ( ℑ ‘ ( log ‘ 𝑥 ) ) ≠ π ) |
| 31 |
30
|
necomd |
⊢ ( 𝑥 ∈ 𝐷 → π ≠ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) |
| 32 |
20 24 25 31
|
leneltd |
⊢ ( 𝑥 ∈ 𝐷 → ( ℑ ‘ ( log ‘ 𝑥 ) ) < π ) |
| 33 |
23
|
renegcli |
⊢ - π ∈ ℝ |
| 34 |
33
|
rexri |
⊢ - π ∈ ℝ* |
| 35 |
23
|
rexri |
⊢ π ∈ ℝ* |
| 36 |
|
elioo2 |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ( - π (,) π ) ↔ ( ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ℝ ∧ - π < ( ℑ ‘ ( log ‘ 𝑥 ) ) ∧ ( ℑ ‘ ( log ‘ 𝑥 ) ) < π ) ) ) |
| 37 |
34 35 36
|
mp2an |
⊢ ( ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ( - π (,) π ) ↔ ( ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ℝ ∧ - π < ( ℑ ‘ ( log ‘ 𝑥 ) ) ∧ ( ℑ ‘ ( log ‘ 𝑥 ) ) < π ) ) |
| 38 |
20 22 32 37
|
syl3anbrc |
⊢ ( 𝑥 ∈ 𝐷 → ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ( - π (,) π ) ) |
| 39 |
|
imf |
⊢ ℑ : ℂ ⟶ ℝ |
| 40 |
|
ffn |
⊢ ( ℑ : ℂ ⟶ ℝ → ℑ Fn ℂ ) |
| 41 |
|
elpreima |
⊢ ( ℑ Fn ℂ → ( ( log ‘ 𝑥 ) ∈ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ( ( log ‘ 𝑥 ) ∈ ℂ ∧ ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ( - π (,) π ) ) ) ) |
| 42 |
39 40 41
|
mp2b |
⊢ ( ( log ‘ 𝑥 ) ∈ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ( ( log ‘ 𝑥 ) ∈ ℂ ∧ ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ( - π (,) π ) ) ) |
| 43 |
19 38 42
|
sylanbrc |
⊢ ( 𝑥 ∈ 𝐷 → ( log ‘ 𝑥 ) ∈ ( ◡ ℑ “ ( - π (,) π ) ) ) |
| 44 |
15 43
|
mprgbir |
⊢ ( log “ 𝐷 ) ⊆ ( ◡ ℑ “ ( - π (,) π ) ) |
| 45 |
|
elpreima |
⊢ ( ℑ Fn ℂ → ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ) ) |
| 46 |
39 40 45
|
mp2b |
⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ) |
| 47 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → 𝑥 ∈ ℂ ) |
| 48 |
|
eliooord |
⊢ ( ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) → ( - π < ( ℑ ‘ 𝑥 ) ∧ ( ℑ ‘ 𝑥 ) < π ) ) |
| 49 |
48
|
adantl |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( - π < ( ℑ ‘ 𝑥 ) ∧ ( ℑ ‘ 𝑥 ) < π ) ) |
| 50 |
49
|
simpld |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → - π < ( ℑ ‘ 𝑥 ) ) |
| 51 |
49
|
simprd |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( ℑ ‘ 𝑥 ) < π ) |
| 52 |
|
imcl |
⊢ ( 𝑥 ∈ ℂ → ( ℑ ‘ 𝑥 ) ∈ ℝ ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( ℑ ‘ 𝑥 ) ∈ ℝ ) |
| 54 |
|
ltle |
⊢ ( ( ( ℑ ‘ 𝑥 ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( ℑ ‘ 𝑥 ) < π → ( ℑ ‘ 𝑥 ) ≤ π ) ) |
| 55 |
53 23 54
|
sylancl |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( ( ℑ ‘ 𝑥 ) < π → ( ℑ ‘ 𝑥 ) ≤ π ) ) |
| 56 |
51 55
|
mpd |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( ℑ ‘ 𝑥 ) ≤ π ) |
| 57 |
|
ellogrn |
⊢ ( 𝑥 ∈ ran log ↔ ( 𝑥 ∈ ℂ ∧ - π < ( ℑ ‘ 𝑥 ) ∧ ( ℑ ‘ 𝑥 ) ≤ π ) ) |
| 58 |
47 50 56 57
|
syl3anbrc |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → 𝑥 ∈ ran log ) |
| 59 |
|
logef |
⊢ ( 𝑥 ∈ ran log → ( log ‘ ( exp ‘ 𝑥 ) ) = 𝑥 ) |
| 60 |
58 59
|
syl |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( log ‘ ( exp ‘ 𝑥 ) ) = 𝑥 ) |
| 61 |
|
efcl |
⊢ ( 𝑥 ∈ ℂ → ( exp ‘ 𝑥 ) ∈ ℂ ) |
| 62 |
61
|
adantr |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( exp ‘ 𝑥 ) ∈ ℂ ) |
| 63 |
53
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ℑ ‘ 𝑥 ) ∈ ℝ ) |
| 64 |
63
|
recnd |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ℑ ‘ 𝑥 ) ∈ ℂ ) |
| 65 |
|
picn |
⊢ π ∈ ℂ |
| 66 |
65
|
a1i |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → π ∈ ℂ ) |
| 67 |
|
pipos |
⊢ 0 < π |
| 68 |
23 67
|
gt0ne0ii |
⊢ π ≠ 0 |
| 69 |
68
|
a1i |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → π ≠ 0 ) |
| 70 |
51
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ℑ ‘ 𝑥 ) < π ) |
| 71 |
65
|
mulridi |
⊢ ( π · 1 ) = π |
| 72 |
70 71
|
breqtrrdi |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ℑ ‘ 𝑥 ) < ( π · 1 ) ) |
| 73 |
|
1re |
⊢ 1 ∈ ℝ |
| 74 |
73
|
a1i |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → 1 ∈ ℝ ) |
| 75 |
23
|
a1i |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → π ∈ ℝ ) |
| 76 |
67
|
a1i |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → 0 < π ) |
| 77 |
|
ltdivmul |
⊢ ( ( ( ℑ ‘ 𝑥 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( π ∈ ℝ ∧ 0 < π ) ) → ( ( ( ℑ ‘ 𝑥 ) / π ) < 1 ↔ ( ℑ ‘ 𝑥 ) < ( π · 1 ) ) ) |
| 78 |
63 74 75 76 77
|
syl112anc |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ( ℑ ‘ 𝑥 ) / π ) < 1 ↔ ( ℑ ‘ 𝑥 ) < ( π · 1 ) ) ) |
| 79 |
72 78
|
mpbird |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ℑ ‘ 𝑥 ) / π ) < 1 ) |
| 80 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
| 81 |
79 80
|
breqtrdi |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ℑ ‘ 𝑥 ) / π ) < ( 0 + 1 ) ) |
| 82 |
63
|
recoscld |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( cos ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℝ ) |
| 83 |
63
|
resincld |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( sin ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℝ ) |
| 84 |
82 83
|
crimd |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ℑ ‘ ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) = ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) |
| 85 |
|
efeul |
⊢ ( 𝑥 ∈ ℂ → ( exp ‘ 𝑥 ) = ( ( exp ‘ ( ℜ ‘ 𝑥 ) ) · ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) ) |
| 86 |
85
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( exp ‘ 𝑥 ) = ( ( exp ‘ ( ℜ ‘ 𝑥 ) ) · ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) ) |
| 87 |
86
|
oveq1d |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( exp ‘ 𝑥 ) / ( exp ‘ ( ℜ ‘ 𝑥 ) ) ) = ( ( ( exp ‘ ( ℜ ‘ 𝑥 ) ) · ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) / ( exp ‘ ( ℜ ‘ 𝑥 ) ) ) ) |
| 88 |
82
|
recnd |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( cos ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℂ ) |
| 89 |
|
ax-icn |
⊢ i ∈ ℂ |
| 90 |
83
|
recnd |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( sin ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℂ ) |
| 91 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( sin ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℂ ) → ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 92 |
89 90 91
|
sylancr |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 93 |
88 92
|
addcld |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
| 94 |
|
recl |
⊢ ( 𝑥 ∈ ℂ → ( ℜ ‘ 𝑥 ) ∈ ℝ ) |
| 95 |
94
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ℜ ‘ 𝑥 ) ∈ ℝ ) |
| 96 |
95
|
recnd |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ℜ ‘ 𝑥 ) ∈ ℂ ) |
| 97 |
|
efcl |
⊢ ( ( ℜ ‘ 𝑥 ) ∈ ℂ → ( exp ‘ ( ℜ ‘ 𝑥 ) ) ∈ ℂ ) |
| 98 |
96 97
|
syl |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( exp ‘ ( ℜ ‘ 𝑥 ) ) ∈ ℂ ) |
| 99 |
|
efne0 |
⊢ ( ( ℜ ‘ 𝑥 ) ∈ ℂ → ( exp ‘ ( ℜ ‘ 𝑥 ) ) ≠ 0 ) |
| 100 |
96 99
|
syl |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( exp ‘ ( ℜ ‘ 𝑥 ) ) ≠ 0 ) |
| 101 |
93 98 100
|
divcan3d |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ( exp ‘ ( ℜ ‘ 𝑥 ) ) · ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) / ( exp ‘ ( ℜ ‘ 𝑥 ) ) ) = ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) |
| 102 |
87 101
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( exp ‘ 𝑥 ) / ( exp ‘ ( ℜ ‘ 𝑥 ) ) ) = ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) |
| 103 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( exp ‘ 𝑥 ) ∈ ℝ ) |
| 104 |
95
|
reefcld |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( exp ‘ ( ℜ ‘ 𝑥 ) ) ∈ ℝ ) |
| 105 |
103 104 100
|
redivcld |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( exp ‘ 𝑥 ) / ( exp ‘ ( ℜ ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 106 |
102 105
|
eqeltrrd |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
| 107 |
106
|
reim0d |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ℑ ‘ ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) = 0 ) |
| 108 |
84 107
|
eqtr3d |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( sin ‘ ( ℑ ‘ 𝑥 ) ) = 0 ) |
| 109 |
|
sineq0 |
⊢ ( ( ℑ ‘ 𝑥 ) ∈ ℂ → ( ( sin ‘ ( ℑ ‘ 𝑥 ) ) = 0 ↔ ( ( ℑ ‘ 𝑥 ) / π ) ∈ ℤ ) ) |
| 110 |
64 109
|
syl |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( sin ‘ ( ℑ ‘ 𝑥 ) ) = 0 ↔ ( ( ℑ ‘ 𝑥 ) / π ) ∈ ℤ ) ) |
| 111 |
108 110
|
mpbid |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ℑ ‘ 𝑥 ) / π ) ∈ ℤ ) |
| 112 |
|
0z |
⊢ 0 ∈ ℤ |
| 113 |
|
zleltp1 |
⊢ ( ( ( ( ℑ ‘ 𝑥 ) / π ) ∈ ℤ ∧ 0 ∈ ℤ ) → ( ( ( ℑ ‘ 𝑥 ) / π ) ≤ 0 ↔ ( ( ℑ ‘ 𝑥 ) / π ) < ( 0 + 1 ) ) ) |
| 114 |
111 112 113
|
sylancl |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ( ℑ ‘ 𝑥 ) / π ) ≤ 0 ↔ ( ( ℑ ‘ 𝑥 ) / π ) < ( 0 + 1 ) ) ) |
| 115 |
81 114
|
mpbird |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ℑ ‘ 𝑥 ) / π ) ≤ 0 ) |
| 116 |
|
df-neg |
⊢ - 1 = ( 0 − 1 ) |
| 117 |
65
|
mulm1i |
⊢ ( - 1 · π ) = - π |
| 118 |
50
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → - π < ( ℑ ‘ 𝑥 ) ) |
| 119 |
117 118
|
eqbrtrid |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( - 1 · π ) < ( ℑ ‘ 𝑥 ) ) |
| 120 |
73
|
renegcli |
⊢ - 1 ∈ ℝ |
| 121 |
120
|
a1i |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → - 1 ∈ ℝ ) |
| 122 |
|
ltmuldiv |
⊢ ( ( - 1 ∈ ℝ ∧ ( ℑ ‘ 𝑥 ) ∈ ℝ ∧ ( π ∈ ℝ ∧ 0 < π ) ) → ( ( - 1 · π ) < ( ℑ ‘ 𝑥 ) ↔ - 1 < ( ( ℑ ‘ 𝑥 ) / π ) ) ) |
| 123 |
121 63 75 76 122
|
syl112anc |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( - 1 · π ) < ( ℑ ‘ 𝑥 ) ↔ - 1 < ( ( ℑ ‘ 𝑥 ) / π ) ) ) |
| 124 |
119 123
|
mpbid |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → - 1 < ( ( ℑ ‘ 𝑥 ) / π ) ) |
| 125 |
116 124
|
eqbrtrrid |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( 0 − 1 ) < ( ( ℑ ‘ 𝑥 ) / π ) ) |
| 126 |
|
zlem1lt |
⊢ ( ( 0 ∈ ℤ ∧ ( ( ℑ ‘ 𝑥 ) / π ) ∈ ℤ ) → ( 0 ≤ ( ( ℑ ‘ 𝑥 ) / π ) ↔ ( 0 − 1 ) < ( ( ℑ ‘ 𝑥 ) / π ) ) ) |
| 127 |
112 111 126
|
sylancr |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( 0 ≤ ( ( ℑ ‘ 𝑥 ) / π ) ↔ ( 0 − 1 ) < ( ( ℑ ‘ 𝑥 ) / π ) ) ) |
| 128 |
125 127
|
mpbird |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → 0 ≤ ( ( ℑ ‘ 𝑥 ) / π ) ) |
| 129 |
63 75 69
|
redivcld |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ℑ ‘ 𝑥 ) / π ) ∈ ℝ ) |
| 130 |
|
0re |
⊢ 0 ∈ ℝ |
| 131 |
|
letri3 |
⊢ ( ( ( ( ℑ ‘ 𝑥 ) / π ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ( ℑ ‘ 𝑥 ) / π ) = 0 ↔ ( ( ( ℑ ‘ 𝑥 ) / π ) ≤ 0 ∧ 0 ≤ ( ( ℑ ‘ 𝑥 ) / π ) ) ) ) |
| 132 |
129 130 131
|
sylancl |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ( ℑ ‘ 𝑥 ) / π ) = 0 ↔ ( ( ( ℑ ‘ 𝑥 ) / π ) ≤ 0 ∧ 0 ≤ ( ( ℑ ‘ 𝑥 ) / π ) ) ) ) |
| 133 |
115 128 132
|
mpbir2and |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ℑ ‘ 𝑥 ) / π ) = 0 ) |
| 134 |
64 66 69 133
|
diveq0d |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ℑ ‘ 𝑥 ) = 0 ) |
| 135 |
|
reim0b |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ∈ ℝ ↔ ( ℑ ‘ 𝑥 ) = 0 ) ) |
| 136 |
135
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( 𝑥 ∈ ℝ ↔ ( ℑ ‘ 𝑥 ) = 0 ) ) |
| 137 |
134 136
|
mpbird |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → 𝑥 ∈ ℝ ) |
| 138 |
137
|
rpefcld |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( exp ‘ 𝑥 ) ∈ ℝ+ ) |
| 139 |
138
|
ex |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( ( exp ‘ 𝑥 ) ∈ ℝ → ( exp ‘ 𝑥 ) ∈ ℝ+ ) ) |
| 140 |
1
|
ellogdm |
⊢ ( ( exp ‘ 𝑥 ) ∈ 𝐷 ↔ ( ( exp ‘ 𝑥 ) ∈ ℂ ∧ ( ( exp ‘ 𝑥 ) ∈ ℝ → ( exp ‘ 𝑥 ) ∈ ℝ+ ) ) ) |
| 141 |
62 139 140
|
sylanbrc |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( exp ‘ 𝑥 ) ∈ 𝐷 ) |
| 142 |
|
funfvima2 |
⊢ ( ( Fun log ∧ 𝐷 ⊆ dom log ) → ( ( exp ‘ 𝑥 ) ∈ 𝐷 → ( log ‘ ( exp ‘ 𝑥 ) ) ∈ ( log “ 𝐷 ) ) ) |
| 143 |
9 13 142
|
mp2an |
⊢ ( ( exp ‘ 𝑥 ) ∈ 𝐷 → ( log ‘ ( exp ‘ 𝑥 ) ) ∈ ( log “ 𝐷 ) ) |
| 144 |
141 143
|
syl |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( log ‘ ( exp ‘ 𝑥 ) ) ∈ ( log “ 𝐷 ) ) |
| 145 |
60 144
|
eqeltrrd |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → 𝑥 ∈ ( log “ 𝐷 ) ) |
| 146 |
46 145
|
sylbi |
⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) → 𝑥 ∈ ( log “ 𝐷 ) ) |
| 147 |
146
|
ssriv |
⊢ ( ◡ ℑ “ ( - π (,) π ) ) ⊆ ( log “ 𝐷 ) |
| 148 |
44 147
|
eqssi |
⊢ ( log “ 𝐷 ) = ( ◡ ℑ “ ( - π (,) π ) ) |
| 149 |
|
f1oeq3 |
⊢ ( ( log “ 𝐷 ) = ( ◡ ℑ “ ( - π (,) π ) ) → ( ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( log “ 𝐷 ) ↔ ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( ◡ ℑ “ ( - π (,) π ) ) ) ) |
| 150 |
148 149
|
ax-mp |
⊢ ( ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( log “ 𝐷 ) ↔ ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( ◡ ℑ “ ( - π (,) π ) ) ) |
| 151 |
7 150
|
mpbi |
⊢ ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( ◡ ℑ “ ( - π (,) π ) ) |